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ABSTRACT OF THE DISSERTATION

Variable-Precision Arithmetic
For
Vector Quantization

by

Raffi Dionysian
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1994
Professor Milos D. Ercegovac, Chair

This research proposes and investigates a method for the storage and computation in
Vector Quantization (VQ) — a promising technique for image/speech compression. The
improvement is in the representation and arithmetic algorithm; the idea is independent
of the technology and accommodates different search algorithms. Specifically, with simple
lossless compression, the codebook storage in tree searched VQ is reduced more than 20%.
For large codebooks, the simulations predict that the compression would be more than 40%.
The compression of codevectors is achieved with Variable-Precision Representation (VPR),
where we eliminate the sign extension bits. By categorizing vectors, VPR uses non-stationary
nature of codevectors. Entropy measure shows that VPR compresses at least 75% as well as
Huffman coding of vector elements.

In conjunction with VPR, the VQ computation complexity is reduced using Variable-
Precision Classification (VPC) method. VPC evaluates bit-serially beginning with the most
significant bit the codevectors which are in VPR format. When the magnitude of the error
due to the unevaluated bits is less than the magnitude of the evaluated discriminant, we can
classity without processing the remaining bits. We show that as operand precision increases
average necessary-precision becomes asymptotically independent of the operand precision.
VPC makes the complexity of Ly norm equivalent to L; norm. In ensuing VQ of real images,
on average, the codevector element’s precision necessary for classification was less than four
bits.

We implemented circuitry for binary classification based on VPR and fixed-precision
representations. Both designs were implemented in LSIlogic 1.0-u gate array, to search
binary non-balanced trees and encode MPEGII format video (720 x 576 pixels at 30 frames
per second). The comparison showed that VPR lossless compression has negative decoding
cost. Moreover, when the overall execution time is important, VPC halves computation as
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measured either by AT or AT? complexity measures.
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CHAPTER 1

Introduction

We intend to investigate computer arithmetic as means of improving performance and cost
of Vector Quantization (VQ) [NK88, MRGS85]. Vector quantization is a recent development
in signal estimation and detection. It is currently under investigation for image compression,
where it outperforms the current standard by Joint Picture Experts Group (JPEG). There
is also a strong interest in dedicated hardware for VQ. Several integrated circuits have been

implemented specifically for VQ [DG86, FCS90, KYJ93, DJK92, DB8T].

Problem: Vector Quantization

Vector quantization finds in a set of codevectors the vector most similar to the source vector,
a sequence of digitized signal samples. Applications other than compression also require such
a dedicated engine: VQ has been used in segmenting images [GBJMTY], recognizing speaker
and speech [Kav86], and recognizing alphanumeric characters [NJ85]. Many aspects of the
VQ computation have been investigated in the literature. The intent of these investigations
has been primarily to decrease computation time. Few have also considered the storage
aspect. Dezhgosha and et. al. have investigated compressing codebook using conventional
compression techniques [DJK92]. Our research differs in that it examines arithmetic to
decrease the complexity of VQQ and improve its implementation. We investigate both storage
and computation aspect. Moreover, since the gains are in arithmetic of classification, our
approach can be applied in variety of algorithms using classification.

We investigate VQ with inner product as the metric for real time compression of video
[Gra84, MRGS85]. Using the arithmetic techniques developed, we implement Pruned-Tree
Structured VQ (PTSVQ). PTSVQ is the scheme with the most potential to search large
codebooks. PTSVQ uses a tree structure to choose from M codevectors a replacement
codevector with only O( log(M)) classifications.

There is a trend toward higher precision arithmetic which is typically achieved at a cor-
responding increase in hardware cost. This has precluded it from high rate signal processing
required for video. In classification, we believe we can attain the benefits of the high-precision
without an increase in cost. Conventionally, classification is performed in two steps. First,
a suitable metric measures the distance between the source vector and each codevector.

Second, comparison of the distances determines the codevector closest to the source vector.



We will analyze these two steps as one single composite module. Our key insight is that in
binary classification, regardless of the operand precision the output is only one bit.

Approach: Variable-Precision Arithmetic

Variable-precision arithmetic embodies two aspects. First, Variable-Precision Representation
(VPR), which by eliminating sign extension bits, reduces storage and computation. In VPR,
we are motivated by the reduction in dynamic range when subtracting similar codevectors.
For each vector, a range indicator can store the number of Most Significant Bits (MSB)
which are zero for all elements. Second part is Variable-Precision Classification (VPC).
VPC avoids evaluation of Least Significant Bits (LSB) to reduce computation. VPC is
easily integrated with VPR. Given the range indicator, VPC skips the initial iterations of
the bit-serial evaluation.

In conventional fixed-precision design, the choice of the precision for VQ evaluation in-
volves a tradeoff between the engine’s cost and its ability to choose the best codevector. In
designing a conventional VQ engine, reducing precision reduces storage, memory-processor
bandwidth and computation. On the other hand, in more cases the precision will not be suf-
ficient to distinguish which of two codevectors is closer to the source vector. Lower precision
causes more frequent arbitrary decisions and higher distortion in compression. Typically, the
classification is performed at the quantization precision of the samples. This varies depend-
ing on the application. A pixel of image is typically quantized at 8 bits. In future, this may
increase to 10 or 12 bits. The samples of speech are quantized at 12 bits, and compact disc
quality music is quantized at 16 bits. VPC goes one step further. It adjusts the precision of
the arithmetic to the instance of classification.

We are motivated by an inherent property of classification: regardless of the operand
precision, a classification reduces to binary decision(s). Binary classification evaluates the
distance between the input and two codevectors and outputs one bit which indicates the
smaller distance. M-ary classification breaks down to (M — 1) binary classification, and is
evaluated as a cascade of functions with binary outputs. In turn, VPC for every binary
function questions: “At what precision does this instance need to be evaluated?” In general,
VPC can be used in computations whose set of possible outcomes does not increase as the

operand precision increases.

VPC is similar to on-line arithmetic [EL88]: operands are processed bit-serially from the
most significant bit. As a composite operator, the metric is not evaluated as a sequence of
“atomic” operations (e.g., multiplications, additions). Instead, we merge these operations
and rewrite the algorithm in terms of a composite operator which incrementally processes
the operands. An initial estimate is formed by processing the MSBs of the operands. VPC
updates the estimate by bit-serially processing the operands. The processing terminates
when the error from the unprocessed least significant bits cannot change the output’s sign.



By avoiding processing of superfluous LSBs, on average, the classification time is reduced.
We have found out that in VPC the average evaluation precision is a constant.

Thesis Outline

e The next chapter provides an overview of vector quantization (VQ), various fast search
techniques, and previous VQ implementations.

e Chapter 3 describes lossless compression of V@) codebooks using VPR. In compressing
codebooks used in encoding real images, we measure the reduction in storage possible
by VPR. We then analyze this and compare it to the entropy of codevectors.

e Chapter 4 develops the VPR architecture. We design a conventional architecture for
comparison. Both modules are implemented using gate array technology to measure
the clock period and show VPR’s negative decoding cost.

e Chapter 5 describes VPC algorithm. It also proves that the average necessary-
precision is asymptotically constant and independent of operand precision.

e Chapter 6 evaluates VPC for PTSVQ with the inner product measure. The average
precision for classification is characterized and measured for real images. Finally, the
VPC architecture is presented, and its cost and performance estimated.

e Chapter 7 summarizes the contributions of the dissertation and discusses future work.

e Additionally, there are two appendices. Appendix A describes a VQ application. Ap-
pendix B documents implementation of both VPR and conventional architectures.



CHAPTER 2

Vector Quantization (VQ)

2.1 Introduction

Vector quantization is the statistically optimum method for lossy data compression. It
can yield the lowest rate-distortion. The distortion due to the compression can be made
imperceptible just like in JPEG, while its compression rate can out perform JPEG standard.
An example of use is in compressing video: the images are broken into blocks of K pixels
(source vectors), x; the encoder compares each source vector with N potential replacements
(codevectors) x°,c=1,---, N, stored in a codebook; it transmits the index ¢ of the best
matching (least distorting) codevector to the receiver. In decompression, the index is used
to approximate x using X° from an identical codebook. For best results, VQ relies on large
set of patterns. Survey papers by Nasrabadi et. al. [NK88], and Makhoul et. al. [MRGS85]
discuss a variety of techniques for building VQ codebooks.

This chapter formulates and reviews vector quantization as classification using inner
product. Section 2.2 formally describes the classification problem, and the inner product
similarity measure. Next, Section 2.3 shows how other similarity measures can be mapped
into the inner product similarity measure. Then, Section 2.4 presents a novel algebraic
transformation which reduces the number of inner products in a classification by one. Sec-
tion 2.5 follows by a simple example, a geometric interpretation, and a real example. Finally,
Section 2.6 reviews investigations in reducing computation and storage, and Section 2.7 sum-

marizes previous implementations.

2.2 Classification

N-ary classification of a vector x is

c= max ' (s(x,xi)) (2.1)

1=1,...,
where s(x, %) measures the similarity between x and X. And max~!() denotes the index 1,

with the highest similarity s(x,%!). In other words, it selects out of N replacement vectors
(codevectors), the codevector X which is most similar to the source vector x.

Often the classification is done in a metric space. That is, a K-dimensional vector space
with a metric d(x,X), where d(x, X) measures the distance [BBT8] between the two vectors x



and x. The distance metric d(x,X) is large for dissimilar vectors and low for similar vectors.

Its properties are:

L. d(x,x)=0

2. 0< d(x,%), x#X

3. d(x,%) =d(%k,x)

4 d(x, %) <d(x,y)+dly,%),Vy

In the metric space, N-ary classification becomes

.1 ~i o«
¢= min, (d(x, p'e )) (2.2)
where min™'() denotes the index 7, with the minimum distance d(x,%"). In other words, it
selects out of N replacement vectors (codevectors), the codevector X° which has the least

distance from the source vector x.

Equation (2.2) can be rewritten in the form of (2.1) by using max~!() instead of min™!()
operator. Since the smallest in a set of distances is equivalent to the largest among the

negated distances:

_ -1 o o ¢
¢= max (—d(x, X )) (2.3)
If
s(x, %) = —d(x,%")

then equation (2.3) is identical to (2.1).
We will discuss only similarity measures which correspond to a distance metric. However,
in general, s(x,X) # —d(x,X). So, s(x,X) is not constrained as the distance metric is. Such

measures are mentioned in [DH73], and VPC may be extended to these measures as well.
Our analysis begins with binary classification (N=2). Equation (2.1) reduces to
2 if s(x,%?) > s(x, %)

c= (2.4)

1 otherwise

In other words between the two codevectors, choose the codevector with the highest similarity
to the source vector. The comparison of two similarity measures shown in (2.4) is often
denoted as a discriminant evaluation. Let’s rewrite the above equation with the discriminant

function. A discriminant measures the similarity of x to X" in contrast to X':

s( )

= d( %") when s(x,%) = —d(x,X)

=

>
>

g(x,fci,fch) h) — s(x,
X?

X') —d(

X,
X,



Rewriting the binary classification (2.4) using the discriminant function,

2 if g(x,%L,%2) > 0
= (2.5)

1 otherwise

In other words, binary classification evaluates a binary-valued function

SIGN(g(x,%"',%?)). If the discriminant is negative then x maps into X', otherwise x maps
into X%. As we we will elaborate in Section 2.4, the discriminant function can be effectively
used to classify among N codevectors.

2.3 Inner Product Similarity Measure

Many classifications problems can be reduced to detecting sign of an inner product. The
most widely use application is in Mean Square Error (MSE) classification [Wha7l, Gra84].
MSE can also be generalized to weighted MSE criteria [DH73]. Moreover, there is a less
apparent application: Itakura-Saito measure [IS68] which approximates a waveform with
the output of a recursive linear filter. All of these three applications have been implemented
with inner product similarity measure:

K
sign(x'y +b) = sign(d_ vy +b)
=1
The inner product of the point’s coordinates with the plane’s normal determines which side
of a plane a point lies on. As shown next, minimizing mean square error is geometrically
akin to classifying between two points separated by a plane.

Mean Square Error

Mean Square Error (MSE) [Wha71, Gra84] while theoretically tractable is simple to evaluate.
For K-dimensional vectors x and X MSE classifier is

c= min " ((x—%)"(x - %)) (2.6)

where min™!() denotes the index, ¢, for which the minimum Euclidean distance [|x — %x°|| is
achieved. In other words, it finds the index ¢ of the codevectors X¢ out of N codevectors
which has the least squared error. This minimization can be carried out as a sequence of
(N — 1) discriminant evaluations.

MSE is attractive for two reasons. First, a small distance implies small observable differ-
ence between vectors, where the two vectors are observed in the same way they were sampled.



Second, during the generation of codevectors (training), it provides a way to cluster source
vectors into codevectors (replacement vectors).

We can evaluate an inner product to find the codevector which yields the least MSE, as
is done in [WhaTl]. Expanding (2.6), and dividing it by two:

1 . 1. .
_ : -1{ = [ A R A c
e= apin 7 (Slxll = %% = (=3 1I%1)) 27)
The first summation is independent of ¢ and does not affect the minimization. It is ignored.
The last summation

1 :
— Sl 23)

1>

€;

depends only on the vector X. It is precomputed and stored with the codevector. Equation

(2.7) becomes an inner product x'&’ summed along with a constant:

c= '_mipN_l (—th(i — ei) (2.9)

c= m‘.eyXN_1 (th(i + ei) (2.10)

because, the smallest in a set of numbers is equivalent to the largest in the negated set of

numbers.

We must note that arithmetically Equation (2.10) may not have a lower complexity
than Equation (2.6). Inner product uses multiplication instead of subtraction and squaring.
Squaring even with the subtraction beforehand would have lower theoretical complexity
than multiplication. Additionally, the inner product metric requires storage and addition
of e;. However, as we will see later Chapter 3, the inner product evaluation can be more
amenable to processing codevectors compressed with VPR. Also for classifying with small
N, an algebraic transformation shown later in this chapter, makes (2.10) more attractive

than (2.6).

Weighted Mean Square Error

Weighted MSE [DHT73], a general form of MSE, is also used in classification. With N

patterns,
c= min 7! ((x - %)'W(x - %)) (2.11)

where x and X are K-dimensional column vectors and W is a positive definite K x K matrix.
WMSE can, for example, allow some elements to be weighted more heavily than others in



classification of the vector. When W is positive definite and also symmetric, (2.11) evaluates

Mahalanobis distance [DHT73].

In image compression, a weighted distortion attains a better subjective image quality
[MS74], since the human visual system’s sensitivity varies for different spatial frequencies.
Until recently however, weighted MSE was not used since it requires more computation than

MSE.

Davidson in [DCG88| has shown the weighted MSE metric can also be evaluated as an

inner product. They expanded (2.11), and divided it by two:
1 1. .
¢= min ! <—XtWX —x'Wx' 4+ -%X' W)A(Z)
i=1,-,N 2 2

If the weight is independent of codevector X', weighted MSE can be evaluated by the
same architecture which evaluates the MSE metric. To do so, the following are precomputed
and stored:

. . —|IW%*
y'=WZX' and ¢ = 7” 5 X

so that

c= maXN_1 (Xtyi + ei) (2.12)

Although the above equation is identical to its counterpart (2.9) in the previous section,
the codevector precision is different. For m-bit unsigned weights, the codevector element’s
precision increases from n to (n+m). VPC, however, will be shown to deal with the increased

codevector precision without modification, as it can evaluate the codevector at any precision.

Linear Prediction’s Similarity Measure

For completeness we will also discuss Itakura-Saito measure [MRG85, 1S68]. It is used,
when compressing speech with Linear Predictive Coding (LPC). In LPC, an all pole linear
predictor estimates a segment of speech. The predictor is given as input a sinusoid whose
pitch is extracted from the speech segment. The predictor’s coefficients are then chosen to
minimize the difference between the output and the speech samples. In VQ of the filter
coefficients, we would like a vector of coefficients which minimizes MSE between the speech
and the linear prediction. To do so, [takura-Saito measure would maximize the similarity of
the autocorrelation between the speech and the predictor’s coefficients:

K
3(X7 Y) = RXX,ORyy,O +2 Z Rxx,kRyy,k (2.13)
k=1

where Rxx is the autocorrelation of the speech samples, and Ryy is the autocorrelation of
the filter coefficients.



2.4 Algebraic Transformation

The maximization in (2.10) requires N evaluations and (N — 1) comparisons. There is a
novel way to reduce the the number of inner products by one. We subtract the first term
in the maximization from the remaining (N — 1) terms. This will bias each term by the
same amount and, therefore, it will not change the index of the maximum measure. This
transformation is useful with the inner product metric because the first term is implicitly
evaluated within the remaining terms. Equation (2.10) reduces to (N — 1) evaluations and
(N — 1) comparisons,

¢= max ! (O,Xt(fci — %) + (e — 61)) (2.14)

i=2, N
After precomputing (X' — %!) and (e; — €;), the above equation reduces to

_ 1 t (@) L7 .
¢= max (O,X v+ bz) (2.15)
The reduction is significant for small N. In binary tree searched VQ (N = 2) this halves
the number of inner products. Exact evaluation of an element of y'(= %* — %), on the other

hand, does require an additional bit of precision for storage and evaluation.

2.5 Classification Example

We will first show a “paper and pencil” example of VQ. We will use matrix-vector multipli-
cations and vector additions. The codebook matrix is stack of vectors y, where y' = % — %'
represents the replacement vector X'. A set of vectors y form the rows of the codebook
matrix. Inner products similarity measure evaluations are grouped into matrix-vector mul-
tiplications where the codebook is multiplied by the source vector x. The resulting vector
has the measure of similarity between the source vector and the codevectors. Classification
is then finding the biggest entry in the resulting vector.

In following example, the vectors are four dimensional (K = 4):

x = (=5,—4,4,5)",

%' = (0,0,0,0), & = 0,
% = (—100,—10,10,100)!, e = —10100,
%% = (—10,-10,10,10),, e =  —200,
% = (=5,-3,3,5), e = —34,
% = (0,10,10,0), e = —100,



where ¢; is defined by (2.8). Subtracting the first codevector from the rest,

y? = (—100,—10,10,100)", b, = —10100,
y® = (=10,—10,10,10)", b3 =  —200,
y' = (=5,-3,3,5), by =  —34,
y> = (0,10,10,0), bs =  —100.

First, we evaluate the similarity measures in the maximization (2.15):

—9020 —100, —10, 10, 100 -5 —10100
—20 ~10, —10, 10, 10 —4 —200
= X _I_

40 -5 -1, 1, 5 1 —34
~100 0, 10, 10, 0 5 ~100

Then, we find the index of the best entry c:

¢ = max ' (0,-9020, 20,24, —100)

i=1,,

= 4

Geometric Interpretation

Binary classification using inner product metric partitions the space with a plane. Vectors
on one side of the partition are quantized into the point 1 (¢ = 1), and on the other side
into the point 2 (¢ = 2). As shown in Figure 2.1 in a plane, classification partitions with a
straight line. In physical space, it partitions with a plane. In general, in a K-dimensional
space, it partitions with a (K — 1)-dimensional hyperplane.

(Classification with an inner product is also referred to as a hyperplane test. It determines
which side of the hyperplane the source vector is on. It performs an inner product between
the source vector and the vector normal to the plane (i.e., codevector), and it adds a constant.
The constant, represented by bias b is the distance of the hyperplane from origin.

In N-ary classification, the space is divided into NV regions or classes. Between every two

w) hyperplanes.

classes lies a hyperplane. Combinatorially, there are N choose 2 (= N
Contrary to a popular misconception fortunately, far fewer hyperplane tests suffice. Simply
put, we need only (N — 1) tests. Each test eliminates one class, and after (N — 1) tests, only

the best class is left.
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X = (11, 502)

Figure 2.1: The inner product metric partitioning the plane with a straight line.
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VQ Example

Now, we show an application of VQ. For image compression, we encoded with mean-residual
VQ [Bak84] which by removing the mean does a simple form of preprocessing. The codebook
was generated using k-means clustering [LBG80]. The data set used for training was 4 x 4
blocks (vector dimension K = 16) from 13 256 x 256 pixel images. The codebook which
had about 2000 codevectors was organized into a binary-tree shown in Figure 2.7. The

tree-structure allowed finding replacement codevector in less than twelve classifications.

We will show the inputs and output data set pictorially. Figure 2.2(a) shows a halftoned
image of Lena. A popular picture for testing image processing algorithms, it is an 256 x 256
pixel image, whose grey levels were halftoned for display purposes. Figure 2.3 is the residual
image after mean of each 4x4 blocks was removed. Subtracting the mean causes some pixels
to become negative. For display purposes the pixels were biased up, such that the most
negative value was displayed as pitch black and zero value was displayed with a gray value.
Also since preprocessing has removed most of the image energy, the residual was magnified
four times (x 4). As can be seen, even after the magnification most pixels still have low
intensity. This implies that their most significant bits are zero. This was an intuitive
motivation for variable-precision representation of the vectors. Finally, we examine the
result of vector quantization. Figure 2.2(b) shows the coded-decoded residual image with the
mean added. Some of the distortion due to coding is apparent even on the halftoned image.
With more sophisticated preprocessing methods, this distortion would become imperceptible

without decreasing the compression rate.

For a better illustration, we look at Lena’s eye and a magnified section of the codebook.
Figure 2.4(a) shows Lena’s eye. Figure 2.5 shows a page from the codebook used for com-
pressing the image. It has 64 codevectors, where each codevector is arranged as 4 x 4 pixels.
The last picture, Figure 2.4(b) is the coded-decoded image, where codevectors have replaced
4 x 4 block of pixels. Again we may note the block artifacts inherent in all compression

techniques which compress one block of the image at a time.

2.6 Fast Search Methods

There has been a variety of approaches to decrease the computation time of VQ. In VQ,
a full codebook search would inspect every codevector for the best matching one. Such an
exhaustive search of codebooks is similar to the operation of a content associative memory.
It has to perform O( KN) operations per source vector. Number of entries is large: N
typically ranges from 2% to 2%°. It was shown both experimentally and theoretically, that
increasing N and K increases the performance. Correspondingly, techniques are developed
which reduce the amount of computation. They can be categorized as follows:
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Figure 2.2: (a) Lena, (b) Lena coded at one bit per pixel.
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Figure 2.3: Lena’s residual.

1. The distance evaluation and comparing against the maximum can be done in tandem.
The evaluation of the metric then can be stopped when the metric is greater than
the previously computed distance [BG85]. In some ways this is similar to VPC. It,

however, cannot be used with similarity measures.

2. Techniques similar to hashing can be used for accessing the codevector with less com-
putation. Similar to hashing each codevector has a precomputed tag. Unlike hashing
using these tags, we can exclude large number of codevectors from the ensuing exhaus-
tive search. Although they reduce computation, these techniques still require O( K N)

operations. These tags also require additional storage.

3. Techniques which are variations of Tree-Structured VQ (TSVQ) [Gra84, BGGMS0]
are most attractive. They reduce the computational complexity to O( K log(N))

operations per search.

Partial Distance

Bei and Gray [BG85] showed an optimization applicable in sequential evaluation of the
distance metric. They would stop the evaluation as soon as the partial distance became
greater than the minimum. As shown in Figure 2.6, the evaluation of metric and comparison
are effectively merged together into one composite computation.

The partial evaluation is applicable for any distance metric. That is, for any measure
where every term of the summation is non-negative. During the metric evaluation, if a par-
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(b)

Figure 2.4: (a)Lena’s eye, (b) Eye coded at one bit per pixel.
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Figure 2.5: A page of codebook.

tially evaluated metric is greater than the minimum, the evaluation can output the outcome
early. Bei and Gray [BG85] evaluated the performance in classification of auto-regressive
sequences and real images. For binary classification, the improvement was more than 25%.
Since the first distance is always evaluated, the improvement would be less than 50%. A
more significant drawback is the inability to apply this idea to similarity measures such as
inner product, where each term can be either positive or negative. This makes this technique
unattractive in binary classification, where the two distance evaluations can be replaced by
one inner product similarity measure.

partial_distance[0] = 0;
fore=1, ---, K
if partial_distance[i] > min then
terminate;
else
partial_distanceli]| = partial_distance[i — 1] + (z; — y;)*;
if partial_distance[t] < min then
min = partial_distanceli];

Figure 2.6: Partial evaluation of metric.
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Excluding Codevectors

For completeness, we present methods for eliminating codevectors without metric evalua-
tions. These techniques require additional storage for the associated index tables. We are
not aware of custom hardware for any of these techniques. The following is a brief summary.

We can index the codevectors using some of the elements of codevector [SM8T7]. Based
on corresponding source vector’s element, we can then limit the search to codevectors within
a hypercube around the source vector. An extension of this idea is K-d trees [Ben75]. K-d
tree is a tree-structure which for branching uses hyperplanes which are normal to one of the
K axis. Since all but one of the elements of the corresponding codevector are zero, the inner
products reduce to element-by-element comparisons. K-d tree VQ has a performance less
than TSVQ), since the orientation of its hyperplanes at the branch nodes is restricted to be

normal to one of the principle axis.

We can bound the search area with a hypersphere instead of a hypercube. In such
an approach, codevectors are ordered and listed based on their norm. Then depending on
source vector’s norm, we index into the list and limit the search to a spherical shell containing
codevectors with similar distances from origin [Mad90]. A more sophisticated variant of this
method uses the first singular value of the codevectors instead of the vector norm[AC87] for
indexing. It can offer better performance, although it requires some form of singular value

decomposition.

Tree-Structured Codebook

Tree-structured VQ (TSVQ) [Gra84, BGGMS0] is fast. Using the tree-structured codebook
decreases the computational complexity of VQ from O( K N) to O( K log(N)). As shown in
Figure 2.7, a tree-structure permits finding the best codevector with a series of classifications.
Each classification chooses the best branch out of a set of branches. Trees with binary
branches result in the least number of classifications. In binary TSVQ moreover, two MSE
evaluations can be replaced with one hyperplane test. This halves the computation and
storage.

TSVQ has higher distortion than exhaustive VQ. After all to get the tree-structure, the
codevectors are clustered together to form the parent codevector, approximating piecewise
linear partition with one linear partition. This results in non-optimal codevector selec-
tion. Experiments reveal that tree structured codebooks of size N designed by the general-
ized Lloyd algorithm (LBG) typically yield a distortion-rate performance comparable to full
search codebooks of size N/2, or alternatively one dB more noise in data compression [Bak84].

Trees with 4, 8, 16, or in general M classifications at every node would make the perfor-
mance of the tree-structured search comparable to the exhaustive search. The generalization
is simple. Let {X;,%5,- -+, X} be the set of all children of the current node. At each branch-
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Figure 2.7: A codebook structured as a binary tree.

ing node, we then descend to node X° which is closest to the source vector x.

More recently Chou et. al. [CLG88] developed a pruned tree search algorithm which
greatly improves the distortion rate performance of TSVQ. Kiang et.al. [KBSC92] improve
the algorithm by allowing a finer degrees of tree pruning. The key idea is as follows. Be-
ginning with a binary tree structured codebook of rate 2R, the algorithm prunes away least
frequently used subtrees. While increasing the distortion, eliminating the sub-tree decreases
the rate. This is continued until the desired average rate R is obtained. Entropy Pruned
Tree-Structured VQ (PTSVQ) [CLGS88], reduces the average codevector index length by re-
moving the infrequently used codevectors. By allowing control on the depth in searching the
tree, PTSVQ permits the user to vary the compression rate. A drawback of PTSVQ is its
variable index rate and variable search time. On the positive side, the variable search time
conveniently masks the variable execution time of VPC. TSVQ has also been extended to
multi-path TSVQ [CCWO91], which searches for the four best candidates in the tree. Overall,
PTSVQ seems the most viable fast search technique.

2.7 Previous Implementations
Table 2.1 summarizes previous VQ implementations. Most of the early VQ implementation

were for speech compression. Since speech has orders of magnitude lower data rate than
video, a VQ encoder is easier to realize. The implementation’s precision depends largely
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Table 2.1: Summary of previous implementations.

Year | First Author Precision | Measure | Operator | Algorithm
[Reference] (bits)

1984 | Tao [TAGS4] 8 | MSE | parallel | VQ
1986 | Davidson [DGS6] 12 | MSE | parallel | VQ
1986 | Nelson [NRS6] 9 | MSE serial VQ
1987 | Abut [ATS87] 8 | MSE | parallel | VQ
1987 | Dionysian[DBST7] 7| 1P parallel | VQ
1988 | Davidson[DCGSS] 12 | IP parallel | VQ
1989 | Ramamoorthy [RPT89] 9 | MSE serial VQ
1990 | Fang [FCS90] 8| 1P parallel | TSVQ
1992 | Dezhgosha [DJK92] 9| MAD | parallel | VQ
1993 | Kolagotla [KYJ93] 8| 1P parallel | TSVQ

on the application. Image pixels used in VQ compression are 8 bits. Depending on the
preprocessing, its precision could increase to 9 or 10 bits. Meanwhile, speech samples are 12
bits.

Several chips directly evaluate sum of square of difference distance. A VLSI imple-
mentation by Davidson [DG86] has parallel subtractors, squaring circuits, and adders. It
operates on 12-bit operands. There are similar VQ architectures which use 8-bit operands
[ATS87, TAG84]. Architectures which have bit-serial subtract, square and addition operators
have also been designed [NR86, RPT89]. These use 9-bit operands.

More recent chips evaluate Inner Product (IP). In binary hyperplane test, one IP simi-
larity measure replaces evaluation of two MSE distance measures. Inner product has only
two type of operators: multiply and accumulate, which makes it easier to implement than
subtract-square-add circuitry needed for distance evaluation. A Systolic architecture pro-
posed by Davidson [DCGB88] uses parallel multipliers and adders with 12-bit operands. Vari-
ations of this Systolic architecture can trade between the number of multiplier-adder units
used and throughput. It can also fully search the codebook or search through balanced
trees. Another chip [KYJ93] uses the same architecture with intent to cascade it with a
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linear predictor to form Predictive VQ.

A recent chip by Fang et.al. [FCS90] can search 8-level balanced trees. It contains
eight inner product processor and eight adjoining codebooks. Each processor, is fed 8-bit
operands, has a multiplier, an accumulator and a comparator. Fach adjoining codebook
stores hyperplanes for a given level of the tree.

Another recent chip designed by Dezhgosha et.al. [DJK92], uses Mean Absolute Distance
(MAD) for the classification. Built using subtractors and adders, it searches exhaustively.
Also, the pixels and the codevectors are non-uniformly quantized at 5-bit to reduce codebook
storage.

We, Dianysian (the prior name of Dionysian :-) and Baker, designed a chip [DB87] at
UCLA to evaluate the inner product metric, with 7-bit operands. Each pipelined chip con-
tained five parallel multipliers and adders with each multiply-add unit forming one pipeline
stage. In addition it had registers to store five source vectors. The chips would have been
cascaded to permit processing of vectors with up to 64 elements.

2.8 Summary

Vector quantization (VQ) approximates a source vector by a codevector, representing the
image by codevector indices instead of pixels. Many VQ techniques are derived from the
classification field, and the key computation is identical. We summarized the previous inves-
tigations in reducing computation, and highlighted the one we believe is the most promising
one: tree structured VQ (TSVQ). TSVQ reduces the computational complexity logarithmi-
cally. M-ary trees allow a tradeoff between better codevector selection and quicker search
time. We developed a generalization of binary hyperplane tests to M-ary hyperplane tests.
This novel technique permits reducing the number of inner products in a classification by
one. Finally, we tabulated the previous hardware designs. A recently published design incor-
porated codebook compression. Another design, a VLSI implementation used a large portion
of the chip for codebook storage. These highlight codevector storage as an important issue.
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CHAPTER 3

Variable-Precision Representation (VPR)

3.1 Introduction

In vector quantization (VQ) as the codebook size increases, the noise in the compression
decreases. This has been shown both theoretically and experimentally. High performance
VQ systems have become viable with the rapid progress in memory technology. Successful
proprietary video transmission systems using VQ have been built [Mok89]. VQ is also a
candidate for the next generation of image/speech compression standards. In this chapter,
we present a scheme for reducing the codebook storage needed in vector quantization. With
storage reduction, we can fit larger codebooks in a given amount of memory. This can

improve the cost-performance of the system.

The memory structure of VQ depends on the search technique employed. In real-time
VQ of video and speech with large codebooks, exhaustive search of the replacement vector
x¢ is computationally prohibitive. A variety of codebook structures [NK88], [MRG85] have
been devised to reduce the search time, sometimes at cost of additional storage. A popular
one is Tree Structured VQ (TSVQ) which uses a tree structure to search N codevectors in
O(log(N)) time. Normally, TSVQ requires twice the number of codevectors. In addition
to the leaves of the codebook tree x°,¢ = 1,---, N, it needs the codevectors on the tree
branches. If the leaf codevectors are used only in decoding, binary TSVQ can avoid their
storage. In binary TSVQ), in every tree branch, the two mean square error evaluations can be
replaced with an inner product with the vector normal to the plane separating the two leaves
[DH73]. This reduces the computation and averts an increase in number of codevectors for

a given codebook.

In the next section, we describe previous work in compression and introduce a novel way
for vector prediction. In Section 3, we present VPR and discuss storing the codebook as
difference of codevectors. In the ensuing section, we show the reduction in storage of actual
codebooks using VPR; we follow with a quantitative analysis of the factors affecting the
performance using a pruned TSVQ [CLG88]. Finally, in Section 6, we extend the scheme
used for binary tree to M-ary tree.

21



3.2 Codebook Compression

Source coding schemes [JN84] are applicable to compressing codebook. For example, a scalar
quantizer can be used. While it introduces noise, it is simple to implement. In specific, u-
law code [JN84] with g = 255 quantizes a 13-bit magnitude of a speech sample into a
floating point number with 3-bit exponent and 4-bit mantissa (7 bits). Originally used in
local telephone stations, this code has been used for compressing the elements of codevectors
trained on speech samples. For better performance, one can train the scalar quantizer — the
precursor to vector quantizer, on codevector elements.

Dezhgosha and et. al. [DJK92] present a non-conventional VQ system. It combines eval-
uation of L; distance metric (mean absolute difference) with non-uniform scalar quantization
of the codevector elements. The quantizer is trained on elements which exhibit a 2-sided
exponential pdf. The element’s magnitude are quantized into 9 different values (4 bits). For
decoding, look up tables are placed between the storage and the processor. (The paper does
not emphasize these tables. Without them, however, conventional weighted representation
arithmetic which they use would not operate.) The paper also states that the loss due to
the 4-bit scalar quantization to be less than 0.2 (i.e., 36.41 vs. 36.28). These SNR numbers
are not in dB units (log of mean square error). Since their design minimizes L; (mean of
absolute difference) in quantization, they similarly used log of Ly a recent criterion for error
measurement. The reported SNR cannot be used for general comparison, although it does
seems marginal. VPR, on the other hand, focuses on noiseless compression which does not
affect the distortion in VQ. Moreover, it is arithmetically benign. It decreases the amount

of computation.

We use codevector prediction to improve compression. We note an inherent property
of codevectors: the difference between two neighboring codevectors is small. By encoding
the difference between codevectors’ centroid, the energy of the stored codevectors reduces.
This lowers the entropy. This also can be realized just by pairwise subtraction of centroid
codevectors. Even a simple scheme of coding the difference — the hyperplane codevector —

can provide significant compression.

In storing codevector difference, VPR is an effective vector compression scheme. By
classifying codevectors based on the largest element of the vector in magnitude (max |z;|),
it accounts for the non-stationary nature of codevector whose characteristic varies from one
codevector to another. For each vector, VPR chooses the precision to accommodate the
largest element in magnitude. For many vectors, all the vector elements are small enough
not to need one or more of the leading bits in their representation. This significantly reduces

the number of bits for codebook storage.

We will compare VPR with two alternatives: zeroth- and first-order entropy coders.
Zeroth-order entropy coding is the best noiseless compression when vector elements are
mutually independent. First-order entropy coding is preferred when autocorrelation of vector
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elements is large. It compresses the difference between an element and its prediction using
the adjacent element. In either case, the decoding is somewhat complex. For example,
Huffman decoder requires a table (e.g., programmable logic array) to convert the code into
a representation more permissive to computation. It also needs shifters for unpacking of
vector elements. More importantly, Huffman codes are variable length. Its length cannot
be determined prior to decoding. As a result, the decoding is serial. In VQ decoders, where
the codevector elements are accessed serially, the marginal gain offered by this method may
become attractive; specially so, as transistors per chip increase and chip design becomes
simpler. VPR, meanwhile, does not require decoding and is not restricted to serial codevector
access. Howard and Vitter [HV92] did present a parallel variant of Huffman coding. It,
however, needs a re-allocation network. The re-allocation network distributes the space
unused by the short codes to the space needed by the long codes. The re-allocation network
requires even more inter-connectivity, incurring further cost. In addition as we will discuss
later, difference entropy coding has other implementation difficulties.

3.3 Variable-Precision Representation (VPR)

Variable-precision representation is an extension of Block Floating Point (BFP) [OppT70].
BFP is a floating point system with a single exponent for all the elements of a vector y.
Originally used in digital filters [Opp70], BFP represents K n-bit 2’s complement integers
as a vector of n-bit fractions and a single exponent:

y = (ylay%"';yK)t 2 |yl <1 Vi
BFP has the advantages of floating point numbers, while by having a common exponent for

all the vector elements, it requires less storage for the exponents.

BFP, through normalization, avoids overflow (or underflow) [Opp70]. VPR uses BFP rep-
resentation where the vector is normalized. It views normalization as compression. Through
normalization, VPR reduces vector precision. This eliminates e bits per element.

In VPR, leading bits which are zero in all the elements are eliminated and the number
of eliminated bits is stored in e:

(yia y127 ey y}x)t = (y12€7 y22€7 o 7y1\"2€)t 2_6

where y is before and y' is after block normalization; both y and y’ are in fractional 2’s
complement form. The floating point radix is two. This maximizes the bit reduction possible
by VPR. In vector normalization, the element with the least number of zeros determines the
normalization. Or equivalently the smallest e is chosen such that,

ly:| < 27¢ v
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Fixed-Precision Representation VPR
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Figure 3.1: Reduction in storage using variable-precision representation (VPR).

This will normalize the fractional representation y
1 )
— <|y,| 3
2 — |y2|
In other words, e designates the smallest interval which contains all the vector elements:

e(y) = |—logy(max|yi])]

Let’s show an example. Figure 3.1 shows the two different ways to store 8-bit precision
(n = 8) elements of
y = (-1/32, 13/128, 5/128, -1/32 )*. Note that when a negative number is converted into
2’s complement, the left most bits that were zero become extension of the sign. Fixed-
precision 2’s complement representation needs 4 x 8 = 32 bits. VPR eliminates three leading

bits (e = 3), it needs 4 x (8 — 3) + 3 = 23 bits. VPR needs nine less bits.

In general, the n-bit fixed-precision requires nK bits for the K element vector y. In
comparison, VPR needs (n — e(y))K bits for vector elements and [log,(n)| bits for vector
range e. When K > 3, e(y) is one or greater, VPR uses fewer bits.
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Computation

Let’s review the computation the codevectors participate in. It selects one of the two branches

in the binary TSVQ:
sign(x'y + b)

where y = (%' — %) is the hyperplane and b = (||&"|| — ||%']|)/2 is the bias term. It is also
referred to as a hyperplane test [DH73]. In VPR, we evaluate

sign(x'y + ')
where y; is (10 — e(y)) bits, and b = 6/226.
To avoid overflow, the dynamic range of the elements is increased in preprocessing. To
start with, a pixel is 8-bit. An element of x, z;, is 9-bits — it is the difference of an 8-bit

pixel from the estimate in preprocessing. An element of y, y; is 10-bits — it is the difference
of two 9-bit elements.

3.4 Experimental Results

We generated three codebooks with k-means clustering [LBG80]. Each codebook used a
different set of images for training. As shown as an example in Chapter 2, the first codebook
was a mean-residual [Bak84] codebook with 16 element vectors (K = 16). It was trained on a
data set made of 4 x4 blocks of pixels (K = 16) from 13 256 x 256 pixel images. The codebook
had 2'' codevectors. The second mean-residual codebook was trained on a data set made of
4 x 8 pixel blocks (K = 32) from 10 256 x 256 pixel images. It contained 2'° codevectors.
The third codebook was for interpolative VQ [HH88] with 32 element codevectors (K = 32).
Its 2'° codevectors were trained on 10 256 x 256 images. All codebooks used binary TSVQ.
The trees were pruned using an algorithm developed by Kiang et. al. [KBSC92].

Figure 3.2 uses the entropy function [JN84] as an upper bound in compressing the centroid
codevectors X, and the hyperplane codevectors y. The zeroth-order entropy H of Random

Variable (RV) Y is defined as,
H(Y) = > —p(Y =i)log,(p(Y =1))

where Y is an element from one of the codevectors y. Zeroth order entropy measures the
information, in bits, required for representing elements of the vector independent of each
other.

As shown in Figure 3.2, hyperplane codevector is a good representation for compressed
storage of codebook. The hyperplane codevector is a prediction of one centroid codevector
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Figure 3.2: Bits reduced with Huffman coding for K = 16 codebook.

by a similar one. As can be seen, as a residual of vector prediction, the hyperplane code-
vector has lower entropy than the original vector. Figure 3.2 plots the first order entropy,
which shows the effect of removing the correlation. As can be seen, this can lead to slightly
better compression. This suggests that in the codevector subtraction most of the correlation
among the elements was also removed. Entropy H(Y') is then close to the maximum possible
reduction in storage. Implementation of first order predictor would be both complex and
restrict the throughput. To predict the adjacent element, the evaluation needs to be sequen-
tial. The evaluation, moreover, would require a multiplier and a subtractor for prediction.
These are in addition to the Huffman decoding of each vector element.

As shown in Figure 3.3, the VPR compression ranges from 2.4 bits to 3.4 bits. In other
words, on average the largest element in the vector was 1/5 to 1/10 of the dynamic range.
Since the vector elements are 10-bit, the reduction in storage ranges from 24% to 34%. The

shown memory reduction accounts for exponent storage:

4

e(y) = G(Y)—}

where four bits overhead to store the exponent is subtracted from the VPR’s bit saving. As
shown in Appendix B, when including other implementation detail, the overhead increases
only 3% per element (from 4.0 to 4.5 bits per codevector).

In these plots, both axis are logarithmic: The exponent e is the logarithm of the max-
imum of the elements log( max( x;)). The SNR is logarithm of error’s variance -log( o)
in encoding images from the training set. Figure 3.3 shows the same positive linear-like
trend in reduction of the entropy as shown in Figure 3.2. We explain the following way: As
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Figure 3.3: Bits reduced for K = 16 codebook.

number of codevectors increases, the K-dimensional space, crowded by more codevectors, is
partitioned to smaller cells. The smaller distant among the centroid codevectors results in
shorter hyperplane codevectors. This improves the compression index E[e(y)].

By categorizing codevectors in compression, VPR accommodates non-stationary nature
of codevectors. As shown in Figure 3.4, the reduction for branches added to the bottom
of the tree structure can surpass four bits per element. Its performance surpasses that of
Huffman coding, which assumes, incorrectly, that the data is stationary. An entropy coder
(e.g., Huffman coder) compresses all elements of a vector with a single coder. Similarly,
the scalar Laplacian quantizer used by Dezhgosha [DJK92] has one quantizer for all the
codevectors. On the other hand, VPR groups vectors based on exponents and codes each
group differently. It exploits the non-stationarity of codevectors.

Figure 3.4 shows that not only subtracting the codevectors improves E[e], but also pre-
processing source vectors, by reducing the vector energy improves E[e]. We will investigate
this with VPR representation of auto-regressive sequences.

Finally, VPR is robust. We measured the codebook compression for both 16 and 32
elements codebooks which were coded using MRVQ and Interpolative VQ (IVQ) [HH88].
We also pruned the codebooks to N codevectors. Table 3.1 shows the compression using
Huffman and VPR coding. As can be seen, VPR has similar savings for the 32 element
codevectors (K = 32).
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Table 3.1: VPR compression of several codebooks.

Code | VQ | K | Tree N|n—H(X)|n—H(Y)| Ele | Storage
Book Pruned [bit] [bit] [bit] | Reduced
1 MRVQ | 16 | Yes 466 2.32 3.05 2.66 26%

2 K 16 | No 1906 2.58 3.49 3.27 33%

3 K 32 | Yes 292 2.32 3.35 2.65 26%

4 K 32 | No 913 2.53 3.78 3.30 33%

5 IVQ |32 | Yes 875 2.06 3.68 3.36 34%

6 K 32 | No 922 2.11 3.72 3.40 34%
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3.5 Analysis of Preprocessing

We will show that source vector preprocessing improves the VPR compression. VQ pre-
processing aims at improving the signal compression by extracting features from the signal
and compressing them separately. It yields a hybrid coder which achieves better signal
compression without requiring bigger codebooks. Some preprocessing techniques such as
mean-residual VQ reduce the energy of the source vector (x). Another example we will
investigate, gain-shape VQ, normalizes the energy of the source vectors. Both such tech-
niques reduce L, of the source vector x, max( z;). As we will see, this aids the codebook
compression (e x log(max(z;))).

We will analyze the effect of preprocessing of the source vectors on the codevector com-
pression. We will compress first-order Auto-Regressive (AR) sequence. AR sequence ac-
counts for the correlation which exists in real-world image and sound [Gra84] and which is
rooted in the continuity of real signals:

z; = N(p=0,0=0?)

T

zry = prr_y + N(p=0,02=0*(1-p%) k=2,....K

where the vector elements are output of a first order AR source which is excited by a Normal
(Gaussian) random variable. This is also referred to as a Gauss-Markov source. The first

element is a zero mean Normal RV with variance 2. Subsequent element are a fraction of
2

n*

the previous element summed with a Normal RV of variance o
o, =01 —p?)
The fraction is dependent on the variance-normalized correlation p,

FIX.X,_
p = P1XEXen] e 1 oo<,<t

0-.’1?

We note that due to correlation between vector elements, a RV with small o2 results in
vectors elements with large o2.

In the following analysis, we assume that preprocessing of source vectors effects codevec-
tors similarly. Each codevector X is the centroid of a cluster of source vectors x determined
during the training. During the training on the source vectors, codevectors track the sta-
tistical properties of source vectors, inheriting their characteristics. For example, in mean-
residual VQ, where preprocessing results in zero mean source vectors, codevectors which we
inspected also had zero mean. Or the inspected codevectors X had correlation within the
neighborhood of source vector correlation (e.g., px = 0.23 while pz = 0.29 ).
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Mean-Residual VQ

Mean-residual VQ is a simple form of preprocessing of input signal. The vector mean, which
is coded separately, is used to predict the vector. The residual vector which has lower
variance is then the vector which is quantized.

Subtracting the vector mean, results in significant reduction in storage. Figure 3.5 shows
the affect of removing the mean. It measures the average exponent E[e] for 10,000 auto
regressive vectors with and without their mean. The variance was set at o = 0.17, and
correlation was set at p = 0.98, while vector dimension K ranged from 1 to 64. This was a
relatively high variance picture (256 x 256 pixel copy of Baboon) which was far more than
the average values measured on a set of 20 images. For an average AR sequence segment,
subtracting the mean, increases the exponent often by more than one bit. For convenience,
every pixel was normalized (—1 <z <1).

One would strictly assume that subtraction increases the dynamic range. To avoid over-
flow the maximum number of bits used in the representation should increase by one. On
average, however, the residual has a smaller maximum. As a result, E[e] of codevector im-
proves and less bits are used. A supporting argument is that ux estimates the elements. For
a vector dimension of K = 32, the variance of the residual vector was decreased to 1/6 of
the original. Moreover, VPR of the 10-bit element codevectors with a high probability had
also the MSB zero p(e(x — i) > 1) & 0.95, where i denotes the vector (1,1,,...,1).

In VPR coding, the average exponent of mean-residual codebook gives a conservative
estimate on performance of other VQ preprocessing schemes. Mean-residual VQ was chosen
for the ease which it could be implemented with. In actual systems, preprocessing can be
more elaborate. Other techniques such as interpolative VQ [HH88], which during prediction
aim to reduce the maximum, would reduce the codebook storage further. Alternatively,
mean-residual VQ can be viewed as a two-band sub-band coder where the high band is vector
quantized. More than two bands are shown to be desirable in sub-band coding [WBBW88].
With more bands, the variance of the sub-band coded image decreases. This will also make
VPR compress more. For example with the maximum possible number of sub-bands, the
coder will be performing a discrete cosine transform of the whole image, where the variance
of most coefficients is quite small.

Gain-Shape VQ

Gain-shape VQ is a VQ preprocessing technique which encodes the energy of a vector x and
the normalized shape vector u (u = x/||x||) separately. Average energy of an element of u,
E[u?], becomes

X 2
> !

K K

Bl

K3
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Figure 3.6 shows the performance for normalized vectors, with K varying from 1 to 64.
With increasing K, the average energy of an element u; decreases, improving the average
exponent Ele]. In the Figure we have also shown the probability that the MSB is zero,
p(e(u) > 1). For large vector dimension K, it is almost one (e.g., p(e(u) > 1) =~ 0.993 for K =
32). If we drop the MSB of the magnitude, very few if any of the normalized codevector
elements will saturate the reduced dynamic range. This result can be usetul in fixed-precision
implementation.

The simulations were cross checked. To observe the effect of the pseudo-random gener-
ation, two different random numbers were used. The difference in result between the two
set of vectors was less than 0.1 bit. The simulation results are insensitive to the statistical
fluctuations due to averaging and random number generators to less than 0.1 bits. Each
simulation had a set of 10,000 pseudo-random vectors x.

3.6 Theoretical Performance of VPR

We analyze the performance of VPR as a function of vector variance, using an analytical
model. The model yields only a lower bound, even so it gives a significant insight. The
model measures the performance for a stationary codevector pdf. It conservatively deviates
from measured values due to the non-stationary nature of codevectors.
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Figure 3.6: For large K the MSB almost always zero (p(e(u) > 1) ~ 1).

Recalling the definition for hyperplane codevector y,

>

y =% —x"
where ¢ and h are two nearby centroid codevectors. A hyperplane codevector is the residual

vector after one centroid codevector predicts a nearby one.

We observed that the histogram of hyperplane codevectors y resembles a two sided ex-
ponential pdf. Figure 3.7 shows a histogram of the hyperplane codevector elements. The
codevectors are from the K = 16 codebook mentioned previously. The hyperplane codevec-
tor’s elements, which are summation of many RV, might be suspected to have a Normal pdf.
However, as generally known [JN84], the histogram of pixels after prediction instead of being
bell shaped has a sharp peak at zero. There are two reasons. First, a Normal pdf requires
that all the summed random variables to be independent. In real images this cannot be
expected. Second, a Normal pdf requires that the random variables be stationary. Images,
on the other hand, are composed of variety of textures.

As shown in Figure 3.7, two sided exponential pdf, also called Laplacian, match the pdf
of codevector elements well. The Laplacian density of the RV Y is

1 =2
- |yl
\/an

Superimposed on the histogram is a zero mean Laplacian pdf with ¢ = 0.097, where the

fy(y) =

standard deviation was that of the codevector elements L(x = 0,0 = 0.097).
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Figure 3.7: A Laplacian pdf superimposed on histogram of codevector elements.

Let’s estimate the average reduction for a vector of independent identically distributed

Laplacian random variables. Since we are looking at the magnitude of the elements, let
Gy (y) denote the Probability Distribution Function (PDF) of |y|:

Gyy) 2 PV <y) = [ 2f(u)du
R L

Gy (y) can be also viewed as the PDF of an exponential pdf with mean p = % Using Gy (y),
we can estimate the average exponent E[e(Y)]:

Ble(Y)] = Y iP(e(Y) = i) = 30 P(e(Y) = 1)

n o\ K
(-

Now, let’s compare this analytical result to the experimental results.

The analytical estimate, illustrated in Figure 3.8, is conservative. It significantly under-
estimates the actual reduction of non-stationary vectors. The analytical estimate assumes all
vector elements belong to a memoryless random sequence with Laplacian pdf and constant
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Figure 3.8: Actual VPR reduction and its conservative analytical estimate.

variance. In practice, the hyperplane codevector’s variance differs depending on which level
of the tree they are located at. Hyperplane codevectors at the top of the tree are the
difference between two centroids representing different classes of codevectors, they have high
variance. Hyperplane codevectors at the bottom of the tree are the difference between two
nearby adjacent centroids: they have low variance. As we descend the codebook tree, the
variance of hyperplane codevector y decreases. The vector element y statistically does not
belong to a single stationary class; the codevector and its variance are non-stationary.

As codebook size decreases, the experimentally measured reduction improves faster than
the analytical model. Likewise as more codevectors are pruned from the codebook tree, the
standard deviation o, decreases from 0.12 to 0.09. This means that the pruned codevec-
tors have lower than average variance, supporting our hypothesis that the variance is not
stationary.

3.7 M-ary Tree Storage

VPR can be generalized to reduce the storage for M-ary trees. We will present a scheme
for storing the difference of any number of codevectors M, where the computation can also
be made incremental. In other cases, storing the codevector’s difference would be only for
removing the redundancy in codevectors. For these, we will present a scheme which will
allow concurrent codevector accesses.
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Storing Chain of Differences

As shown in Figure 3.9, an M-ary tree can be stored as a chain of differences. Each sibling
is predicted by the closest codevector which has not been put in the storage. The sibling is
subtracted from the predictor and is stored. The differences forms the link of the chain. To
reconstruct a codevector, all the previous codevectors in the chain are accessed. This is ideal
when the the M codevectors in the codebook are searched sequentially in a fixed order.

Depending on the sequence of storage, the compression varies. The compression is de-
noted by the sum of the exponent e(X* — %X") of the codevector difference varies. In the
following equation, we change the enumeration of M codevectors such that the number of

bits used in storage is minimized:

max e(f(l) + Z e(f(i - f(i_l)
Venumeration :

Akin to the traveling salesman problem, it can be solved with similar heuristics. To access
a codevector %/, we would have to access all the previous codevectors in the tour:

where we have stored %!, %? — %!, %% — %2, .-, &M — xM-1,

In an M-ary tree, we can incrementally perform the inner product. This is similar to
binary trees, where the search processor conveniently used difference of codevectors (y =
(X' — %)) in the computation, With inner product measure, the evaluation of codevector %/
can use the result of evaluation of %’~!. This can reduce the computation:
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Storing Difference from One Codevector

Predicting from only one codevector permits fetching codevectors concurrently. We can
test all M codevectors as the predictor, choosing the one with most reduction in saving.
For example in Figure 3.10, for reconstructing codevector x‘, we need the predictor x?
and the difference y*. Furthermore with inner product metric, we need to store only the
codevector difference. This was already shown in Section 2.4. These two factors together

permit reconstructing a codevector with only one accesses.

For better compression, we can optimize the prediction. We can generate the optimal
codevector. Compression improves when the predicting codevector is similar to all codevec-
tors by L., measure (L., (X' — &xPredc!)). Figure 3.11 shows codevector, z?"*%°! where zPredic!

is the centroid which uses the exponent measure for distance:

Xpredzct — min_l Z e(f{Z o Xp'redzct)
X -
7

The above equation yields the predictor which minimizes the distance. Note that when
L., = L,, this scheme is identical to prediction from x™°¢" . Indeed, x"*¥* could be
iteratively derived from the parent codevector. As already discussed, the codevector z?"e#*t
itself does not need to be stored.

Prediction from one codevector is most effective for small M. For large set of codevector
M, the prediction can be poor. For example, in exhaustive search of large codebook(M = N),
one codevector cannot excel in predicting the other ones. After all, a codebook is collection of
codevectors which captures the diversity of the input. Any portion of the signal which would
have been common to all the codevectors would have been extracted by the VQ preprocessor
before the codevectors were ever generated.
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Figure 3.11: Storing difference from a single predictor.
3.8 Conclusion

Hyperplane codevectors are better suited for storage than centroid codevectors. Hyperplane
codevectors which are the difference between two similar centroid codevectors have less
information than centroid codevector. This was experimentally verified. Both the zeroth-
and first-order entropy for 16 element (K = 16) codevectors were measured. The reduction
with zeroth-order entropy of the centroid codevectors varied from 2.3 to 2.6 bits per element,
while for the hyperplane codevectors it varied from 3.0 to 3.5. The improvement was at about
0.7 bits. On the other hand, the first-order entropy, which required a predictor could improve
our reduction by about 0.1 bits. This suggests that subtracting similar centroid codevectors
has removed most of the element-element correlation. Finally, with VQ preprocessing, even
for centroid codevectors there was significant reduction in storage. VQ preprocessor aiming
to reduce information in signal, also reduces the information in the codebook.

Variable-precision representation (VPR) is an effective noiseless encoding of hyperplane
codevectors, whose decoding is amiable to arithmetic. VPR determines the vector elements’
leading bits which are sign extension. It then avoids storing these bits for each vector
element. Instead, for each vector, it stores the number e( y). The decoding takes advantage
of reduced precision, resulting in negative decoding cost. VPR is also effective in reducing
storage. For storing a binary tree structured VQ codebook, VPR saves between 24% and
34% in storage. It compresses 75% as well as entropy coding. VPR effectiveness stems from
the non-stationary nature of codevector. The savings increases as the signal to noise ratio
(SNR) of VQ coder increases. With even bigger codebooks than were simulated with the
current machines, we predicted the saving will be greater than 40%.
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CHAPTER 4

VPR Architecture

4.1 Introduction

This chapter discusses VPR’s architecture and the cost-performance of its implementation.
First, we present bit-serial VPR architecture. Then, we discuss speedup using pipelined
and bit-parallel evaluation. This is followed by a VPR implementation which can vector
quantize real time video (MPEGII rate). Since in variable-precision representation (VPR)
the noiseless compression is achieved by eliminating zero MSBs, we suspect VPR based
classifier has low or even negative decoding cost. We verify this by a comparison with a
conventional fixed precision implementation. We try to generalize the comparison of these
two implementations by analysis of the VPR architecture vis-a-vis the conventional.

4.2 Architecture

This section looks at a bit-serial non-pipelined VPR architecture. The processor architecture
is determined by the format of data storage. After we discuss organization of codevectors,
we describe the details of the inner product processor.

Memory Organization

Let’s consider storage of one codevector. As the precision varies by one bit, the number of bits
required for representation vary by K bits. A general approach would treat the elements as
separate variable-precision numbers, packed into memory words. The processor would then
have to unpack them into fixed precision numbers to feed to the parallel multipliers and

adders. The unpacking conversion step would require a shifter.

We present a packing scheme which avoids the unpacking step. We note the common
precision of vector elements’ mantissa. Let a word have K bits for K element vector. With
one word for each bit of precision, the vector y uses (n — e(y)) words. Each word groups
bits of the same weight of all the vector elements, spreading an element across several words.
Storage used, K x (n —e(y)) bits, is the minimum number of bits to represent a VPR vector.
In Figure 4.1, the dashed line demarcates one of the vector elements. For example with
K = 16 and n = 10, each vector y needs (10 — e(y)) 16-bit words per vector. Next, we
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Figure 4.1: In variable-precision representation, storing elements bit-serially.

describe an inner product operator which evaluates y in the same order as it is stored in
Figure 4.1.

Bit-Serial Inner Product

As discussed in previous chapter, the VPR computation determines
sign(x'y + 1)

where,

=i b= .;Ze

Recall the vector y is the hyperplane codevector, and the bias term b is the distance of the

y

hyperplane from the origin.

We can evaluate the codevector as it is read in VPR format. To show this, we dissect

the inner product into bit-serial evaluation:
Xtyl = Z ll?k’y;g
&

n-1-e(y)

= —Z$ky;c,o+ > Q_jzfﬁky;c,j
P = p

The inner loop is implemented in hardware. In other words, in every cycle it multiplies
the x; with j-th bit of y; and sums the result. The outer loop is sequential evaluation of
n — e(y) iterations. As shown in Figure 4.2, evaluation of the inner loop forms the bulk
of the processor. For fast execution, the inner product is accumulated in carry-save form.
Every cycle, partial products which have the same weight are generated and summed. After
the last iteration, the sign detector adds the saved-carry to the pseudo-sum and outputs the

sign.
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As we will discuss later in Chapter 5, VPR inner product module can be incorporated into
variable-precision classification (VPC) [DE9O]; VPC architecture would complement VPR.
While VPR would avoid the sign extension MSBs; it would skip the superfluous LSBs. The
evaluation would be similar to Figure 4.2, except the bit-serial evaluation would be from
MSB to LSB. It would also keep track of the error of the inner product (Xty’ + b/). When
the error becomes less than the estimate of the inner product, the sign of the output cannot
change with succeeding evaluation. At this point it could terminate the evaluation.

4.3 Increasing Throughput

A bit-serial architecture, although simple to implement, may not have enough throughput.
For increasing the throughput, we look at both bit-parallel evaluation and pipelining.

Bit-Parallel Evaluation

For an arbitrary speedup, we can trade in chip area and pins for bit-parallel evaluation. We
evaluate the inner product bit-parallel. Evaluation at higher digit radix reduces the number
of iterations. Even when evaluating at higher radix, we vary the storage precision by one bit
at a time (radix-2). This retains all of the VPR reduction of storage.

Let’s look at the memory organization for a digit-serial processor. Figure 4.3 shows
the memory organization for the m-bit digit serial processor. It is similar to the bit-serial
memory organization except it widens a word from K bits to mK bits. For m-bit digit, we’ll
group m K-bit words into an mK-bit word. When we divide the element’s (n — e(y)) bits

o

words. Sometimes, though, we need to fetch one more word. For example, Figure 4.4 shows

into m-bit chunks, we need

that a single m-bit access cannot fetch an m-bit element. When the previous codevector
uses only part of the word, the current codevector begins at the middle of a word. This
worst case scenario is shown by the codevector y! which starts in the middle of a word and
spreads into an additional word. At worst case, we need w words,

w = {LG(YWH

m

Bit-parallel evaluation requires more memory-processor bandwidth. For one, it accesses
m bits at a time, even when only one bit was needed. A less obvious drawback is in VPR
packing which results in the MSBs of vector elements to be non-aligned with the word

boundary. When vectors are accessed randomly, as is in binary TSVQ, we use only the bits
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Figure 4.4: A codevector smaller than one memory word yet requiring two memory accesses.
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of the target codevector, even though we fetch the whole word. Fetching bits which do not
belong to the targeted codevector, incurs additional traffic on the memory-processor bus.

For an architecture with maximum parallelism at the bit-level, let m = n:
w < 2

It may be possible to fetch a codevector in one access (w = 1). In the worst case, however,
a codevector may be stored across the word boundary. Accessing such a codevector would
take two cycles.

For a bit-parallel scheme, the speed up S,araue(m) with respect to bit-serial becomes
n

S, arallel\ 1T =

parattet(1M) "

In words, the speedup is the ratio of the memory accesses in bit-serial and bit-parallel ar-
chitectures. For an architecture with maximum bit-level parallelism, for maximum speedup,
let m = n:

Smaz parallel = Sparallel(m = n)

Smaz parallel S

NS

In other words, misalignment in storing variable length codes results in at least two cycles
for evaluation. Area-time ratio of bit-parallel to bit-serial implementation is

Aserial X Soaratta(m) = K(Aradiz—2 gen + Aadder)
parane K (A —bitgen + Andder)
K(Aradiz—2 gen + Aadder) n— €
Km(Aradiz—2 gen + Aadder) w
n

Aparallel

n—e

wm [”_%ﬁb +1 (4.1)

m

&2

Due to truncation and alignment issue, the evaluation time does not inversely decrease
with the processor size.

The inner product evaluation can be broken to summation across memory accesses, bits’
weight, and vector elements:

w—1 jm+m—1

x'y = Y Y 27wy, (4.2)

7=0 i=jm k

hardware

where the two inner summations are implemented in hardware, and the outer summation is
sequential. For simplicity, we have assumed that the elements are non-negative numbers.
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To reduce wiring, we reorganize the m K partial product generators of an element together
into K m-bit partial product generators —K sub-multipliers of m by (n — 1) bits. This is
reflected in changing the summation order from (4.2):

jm+m—1

w—1
Xy = Y3 Y 2wy,

i=0 k  i=jm

hardware

Figure 4.5 shows the corresponding digit-serial processor. The digit-serial processor is also
similar to bit-serial processor, except it replicates the partial product generators m times, and
it masks to annul the portion of the word which belongs to another codevector. Effectively,
on the fly, it trims the accessed elements to (n — e(y)) bits.

As shown in Figure 4.6, the partial product generator incorporates m AND gates to mask
out the bits not belonging to the codevectors. When accessing codevectors randomly, as is
done in binary TSVQ, the masks allow us to fetch a VPR codevector with variable number
of words.

Pipelining

Pipelining is an attractive means of increasing throughput. It is both low cost and simple
to incorporate. It reduces the inner product evaluation time by reducing the cycle time.
Instead of waiting for propagation through the summation network, we need to wait only
for propagation through one pipeline stage. The pipelining speedup Spi,(1) [Kog81] is

nTori inal Tori inal
Siel = — Ts% . Tac
pive({) CENEA / + Liatch
N nl
= n+l—1

As the number of stages of the pipeline [ increases, stage time T decreases. Even if each
codevector to be chosen for classification depends on the previous one, S, still can be large.
For a codevector with precision n, there are n independent evaluations. In the limit, as the
levels of pipeline [ increases, the speedup approaches n:

lim Syipe(l) = n

{—oco

In words, the pipelined processor can at most fully evaluate the classification in the time the
non-pipelined processor would evaluate one bit. As we will show later, there are practical
impediments to increasing [. In practice, the number of pipeline stages [ is few. Pipelining
incurs overhead due to latency and Tjq.p.
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Pipelining area-time ratio is

Aserial 1 nl
Si e [ =
Apipe . o ( ) 1 + ZAbuffer/Ase'rial . n + [—1

(4.3)

Pipelining costs little — it only needs some intermediary latches. All the while, pipelining
permits far more processing for a given amount of silicon area.

Now we compare the area-time ratios of pipelining and bit-parallel evaluation by dividing

(4.3) and (4.1):

Aparallel % Spipe(m) _ I(m(Aradiz—Q gen + Aadder)

= — x 1
Apipe Spa'r’allel(m) K ATadia:—Q gen + Aadder + ZAbuffer

Since (K (Aradiz—2 gen + Aadder) > Abusser), for small m bit-parallel speedup costs more area
than pipelined speedup.

Pipelining and 4-ary Search Trees

When using tree structured codebooks, a binary tree is favored over M-ary (M > 2) tree.
A tree with 2P leaves, when structured into a binary tree requires D inner products, while
when structured into an M-ary tree requires Mlogys_1(2P) = DMlogy_1(2) inner products.
Even though an M-ary tree requires more evaluation (M > 2), it might find less distorting
codevector.
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On a pipelined architecture, a 4-ary tree may execute in comparable or even less time
than a binary tree. A 4-ary tree has one more inner product than binary tree but has one
less pipeline break. In two binary branches, two inner products are evaluated randomly:

n

2 T'(Binary Branch) = 2 ([2

-‘—{—1—1)—{—1 cycles

where we have assumed half the time a codevector would be misaligned. In 4-ary tree, three
inner products are evaluated sequentially. On a pipelined processor, only the first one incurs
[ — 1 cycles of pipeline latency:

n+n+n

T(4-ary Branch) = [ 5

-| +(I—1)40.5 cycles

For what pipeline latency [, and precision n, does one 4-ary branch evaluate in comparable
or less time than two binary branches?

T'(4-ary Branch) < 2 7T'(Binary Branch)

g s < (e e
m < 1-15
o] < .

For the implemented radix-4 architecture which was pipelined to six levels,
n=10 ; [=6

searching a 4-ary tree would require slightly less time than searching a binary tree. It would
take 2% less time than binary trees (20.5 versus 21 cycles), even though there is 50% more
computation (3 versus 2 inner product).

Our implementation which we discuss next was for searching binary trees. At the time
only algorithms to search 4-ary trees were not readily available. It can be easily modified
for a 4-ary tree. To do so, the sign detector would be replaced with a maximizer — a register
which keeps track of the maximum of inner products and a comparator which compares the
maximum and the output of inner product both in redundant representation.

4.4 Implementation

To fully assess VPR, we proceed to implement the VPR core of the VQ processor. The
developed core evaluates the sign of the inner product, where the codevector is in VPR

format. As shown in Appendix A, it is targeted for MPEGII ! data rate. We used VIEWlogic

1720 x 576 pixels at 30 frames per second

47



for capturing the design schematic and verifying it. We also measured the critical path
assuming that it was fabricated in LSI Logic 1.0-u gate array [Cor91].

Gate array is attractive for two reasons. First, gate array provides a test ground for
comparison of two competing architectures. Given the schematics of the design, we can
estimate the cycle time and know the gate count. Second, the gate array is a viable means
for production. Tools automatically will map the schematic into a gate array. Partially
fabricated dies will expedite the fabrication time and reduce the cost.

In our analysis we have also evaluated the impact of pipelining. A six stage pipeline
(I = 6) can decrease the total execution time about 25%. It is simple to pipeline either of
the designs. For accumulation both designs used CSAs. To pipeline we only need to insert
the pipelining registers.

VPR Implementation

A bit-serial (radix-2) architecture would be simple to design. It would also minimize the
memory bandwidth. However, even when pipelined, the processor could not encode at the
video rate of MPEGII standard. Therefore, we implemented a radix-4 design. We have also
developed the pipelining. The design and its pipelining are presented in Appendix B.

The VPR implementation is based on Figure 4.5 using radix-4 partial product generators.
The VPR core is 16 (= K) radix-4 partial product generators and a summation tree. The
radix-4 partial product generators, which use string recoding (Booth) of the multiplier,
act like digit-serial multipliers. Their output along with the bias term is gathered by a
tree of adders and accumulated in a carry-save redundant form. Through the multipliers,
the addition tree is iteratively fed the digits of the VPR codevector. It presents its final
accumulation to the sign detector. For fast execution time, the sign detector is based on a
carry look ahead adder as discussed in Appendix B.

VPR has 4-bit of control information for each stored codevector. For 10-bit elements
(n = 10) in VPR format, the exponent e would nominally require four bits. Inspections
of the codebooks presented in the previous chapter show that less than 1% of the time
e € {8,9,10}. Limiting e to three bits, results in negligible decrease in VPR compression.
To minimize its storage cost, we store e in three bits. We use the fourth control bit to store
an offset marker. It flags when the codevector begins in the middle of a radix-4 memory
word. The VPR controller is described in detail in Appendix A.
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Fixed-Precision Implementation

For comparison, a conventional architecture based on multipliers and adders is designed. It
evaluates the inner product as follows:

X'y+b = D wpyr+0b
P

3 4i44
Xty—l-b = Z Z :L’k’yk—l-b
1=0 k=4i41
hardware

where the inner summation is implemented with four multipliers and adders, and the outer
summation is executed in four iterations. The design is described further in Appendix B.

4.5 Comparison

For comparison, we conservatively estimate the execution time which included signal routing
overhead. In both designs, the critical path has been traced. It starts from the string recoding
circuitry through the addition circuitry. Since for low latency, both alternatives for the next
address are fetched to the controller. As soon as the comparison determines the sign, the
address multiplexor outputs either right or left branch address to fetch the next codevector.
With on-chip memory, address multiplexing and memory access require 21 ns. In minimally
pipelined design (I = 2), memory access requires one pipeline stage. In maximally pipelined
design (I = 6), it requires three clock cycles.

In both implementations, we conservatively estimate the execution time. The critical
path is determined to go from the string recoding circuitry through the addition circuitry.
In the measurement of the critical path, we account for a conservative effect of routing. Since
for low latency, both alternatives for the next address are fetched to the controller. As soon
as the comparison determines the sign, the address multiplexor outputs either right or left
branch address to fetch the next codevector. With on-chip memory, this can be performed
in 21 ns. In minimally pipelined design (I = 2), memory access requires one pipeline stage.
In maximally pipelined design (I = 6), it requires three clock cycles.

In radix-4 VPR design, there are overhead both due to misalignment and fetching odd
number of bits. When the number of bits is odd, half the time we read in an extra bit. When
the number of bits is even, half the time the word may be misaligned, forced fetching an
extra word. Assuming that both the probability of being even or odd, aligned or misaligned
is each 0.5, then on average half the time we fetch an extra word. This increases the average
number of bits fetched to four (8 bits), where we assumed a relatively conservative 3.0 bits
reduction (3.3 bits reduction was the maximum measured).

VPR compresses the codevectors, and it has a negative decoding cost. That is, VPR
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Table 4.1: Memory bandwidth of VPR versus fixed-precision design.

Pipeline | CK | Avg(Worst) | Avg(Worst) | BW | BW xT x 10~
[level] | [ns] | Time[cycle] | Time[ns] [pin] | [pinxsec]
VPR |2 20.7 | 5(7) 103.5(144.9) | 42 | 4.35(6.09)
Conv | 2 20.7 | 5 103.5 15 | 4.66
VPR | 6 8.3 | 9(11) 74.7(91.3) |42 | 3.14(3.83)
Conv | 6 83 |9 74.7 15 | 3.36

Table 4.2: Performance and cost of VPR versus fixed-precision design.

Pipeline | Area | CK | CK | Avg(Worst) | AT x107% | AT?x 1072
[level] [gate] | [ns] | [FA] | Time[cycle] | [gatexsec] | [gatexsec?]
VPR | 2 9100 |20.7 |7 | 5(7) 0.94(1.32) | 97(191)
Conv | 2 9993 | 20.7 | 8 D 1.03 107
VPR | 6 11164 |83 |5 | 9(11) 0.83(1.02) | 62(93)
Conv | 6 12841 | 8.3 |4 9 0.96 72
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reduces the total time of VQ. Table 4.2 shows the number of gates, the clock cycle (CK) and
the evaluation time for several designs. For VPR implementation, we also show the worst
case time in parenthesis. We have calculated AT? (Areax (Time)?), which in many instances
has been used as a complexity measure. For VQ at the required throughput, we can halve
the time by doubling the area, so AT is a better complexity measure. For variable-time inner
product, which can be used in searching pruned trees, VPR is on par with conventional. For
a fixed time inner product, VPR’s compression does incur 21% more AT' cost.

Table 4.1 shows the number of bits accessed from memory and BW x T'. We omitted
pins required in both architecture to fetch the address. In conventional architecture, in every
cycle we fetch four 10-bit elements and five bits of bias. In VPR architecture, in every cycle
we fetch 16 radix-4 digits, four bits of bias term, an offset bit, three bits of exponent, and
in addition the address space has two bits more resolution address. On average, VPR again
performed better than conventional. For the worst execution time, however, VPR has a
problem similar to other variable length codes. Due to packing of codevectors, an added
word sometimes has to be accessed. Even so, the number of pins used may be three pins less
(45 versus 42 pins). At most in binary classification where we fetch both exponent for low
latency address generation, VPR will have the same number of pins as conventional. Also in
the single chip system discussed next, we note that the memory-processor bandwidth occurs
inside the chip. The bandwidth comparison becomes unimportant.

VPR, through storage reduction, can reduce system complexity. Given that the VQ
system meets the throughput of the application, the key criteria is the system complexity.
In comparing VPR and conventional, let’s consider a single chip system. We can store
relatively large codebooks on the same chip which houses the processor. For storage, we
choose Read Only Memory (ROM) in lieu of Random Access Memory (RAM). A ROM cell
requires far less area than RAM. In the 1.0-px technology, 7 bits of ROM can fit in the same
area as a single gate. It is quite feasible to put a 4096 entry codebook with 16 element
codevectors (N = 4096, K = 16) on ROM by the the processor. The conventional system
requires 64 mm?, while VPR permits putting the processor along with the codebook in just
45 mm?, a 30% saving. These numbers were calculated for 1.0-x technology. We believe
that in other technologies, VPR similarly reduce the storage. We like to remind, that in a
VQ system, we can use the 30% area to store bigger better performing codebooks.

4.6 Analytical Comparison

To better illustrate the on-line product summation, we compare it with two alternatives: first
with several parallel multipliers and adders, and second with K conventional serial-parallel
multipliers [RPT89]. The qualitative comparison is supported numerically, by estimates of
the number of full adders each structure requires. To simplify the comparison, all alternatives
use linear array of adders.
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The inner product to be evaluated is
y'x = E Yelk
k
= 1%y + Y22 + ... T YKTK

where each of the K elements for simplicity is n unsigned bits. Decomposing the multipli-

cation to addition of partial terms,

th = (_yl,Oxl —|— 2_1‘!/171;51 —|— ‘|‘ 21_ny17(n_1)x1) (44)
H(—y20t2 + 27 Yo a2z + o+ 27 Yy (no1)T2)
+...

+(—yrorx + 2 Yk 1Tk + oo+ 27 YK (nm1)TK)

A parallel multiplier concurrently evaluates the contents of the parenthesis and an adder
accumulates the result. The multiplier uses n? and an accumulator uses 2n + [log, K| full
adders. Each of the K elements uses a multiplier and an adder for one cycle. The total

number of full adders x cycles, F'A,q 41161, 18
FApaa(K,n) = K(n®+2n+ [log, K1)

Now, we rearrange the above equation to sum the terms with the same weight concur-

rently, and iteratively shift and accumulate the sum:

y'x = —(y1001 4 Y2022 + ... + Yx0TK) (4.5)
+2(y1021 + Y2122 + oo F YK 1TK)
—21_n(y71(n_1)$1 + Y2,(n-1)T2 + ... F ny”,(n—l)xK)

This reordering is similar to the way Peled and Liu [PL74] distributed the multiplications in
a digital filter when implementing with read only memory (ROM). In the ROM, all different
ways elements of x can be summed together were precomputed and stored. The bit-vector
of the same significant bits y; would then address the ROM. The output of the ROM would
be equivalent to one of the terms in the parenthesis. Instead of embedding the processing
bit-serially using a ROM, VPR embeds the processing in a summation network.

For n iterations, the VPR structure uses K partial term adder and an accumulator. In
VPR, the partial term adder operates on longer words than conventional. A partial term
adder has n + [log, K| Full Adders (FA). The accumulator has 2n + [log, K'|FA. This
includes one bit of sign extension for on-line sign detection. The total number of full adders

x cycles, F'A,,, is

FA,.(K,n) = nK(n+ [logy K|)+ n(2n + [log, K1)
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Figure 4.7: Bit-serial partial term generator as a 1 x n multiplier.

Finally, we compare VPR with bit-serial multipliers. Figure 4.7 shows the partial term
generator used in the bit-serial arithmetic of Figure 4.2. In conjunction with an accumulator,
it forms a serial-parallel multiplier [NR86], [RPT89]. The conventional sequential multiplier
is an accumulator and a partial term generator, which transfers the result to an auxiliary
latch. For n cycles, K multiplier iterate over (2n + [log, K'|) full adders. With shimming
the multiplications of adjacent elements in the vector by n cycles, one multiplier can be
initialized with the result of the adjacent multiplier. Then, just K sequential multipliers

perform the inner product.
FAsria(K,n) = nK(2n+ [log, K1)

A parallel adder and a latch replace K bit-serial adders and K parallel auxiliary latches
which would sum the multipliers’ output. Moreover, when not bit-level pipelined, there is
no equivalent of accumulation latch. In comparison to the VPR inner product, this design
approximately needs additional nK full adders and latches. This design is similar to the
bit-serial implementation by Ramamoorthy and et. al. [RPT89].

Routing Comparison

In full custom implementation, the VPR inner product structure may incur more rout-
ing overhead than the multiply accumulate structure. When the multiplier is the linear-
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multiplier, the multiplicand can be transferred between the partial product generators by
abutment. On the other hand, in VPR structure all the elements z; are fed to partial term
generator. This increases the routing overhead with respect to the linear-multiplier,

Ayiring < K X VPR PPGEN yirin, — [K/n]| x Multiplier
x nK —[K/nln

x nKk

wirTing

In words, the increase in routing depends linearly on both K and n. On the positive note,
storing the source vector x on-chip requires only as many registers as there are partial product
generators (i.e., nK bits). Since the number of latches are few, the high bandwidth between
the inner product hardware and the source vector can be encapsulated in the chip.

VPR can have a lower latency summation network than conventional. In our analytical
comparison, we assumed a linear summation network. Now let’s look at a tree summation
network used to minimize the summation delay. In VPR, summation is done by one network.
With multipliers and accumulators the summation is broken into two networks. First, the
multiplier sums the partial terms. Then the adders accumulate the output of the multipliers.
This partitioning results in non-optimality. It increases the overall depth of the adder tree
by two full adders when compared to VPR’s summation network.

VPR for a Programmable-Precision Filter

Since inner product is used also as a digital filter, VPR can be also used for digital filtering,
although the application is different. In a programmable filter not only the coefficients
may vary, but also their precision may vary also. VPR can be used for increasing the
range of throughput the filter module can accommodate. The vector coefficient y would be
stored as VPR. VPR can have similar application to what the architecture by Peled and Liu
[PL74] implemented using ROM. The VPR network can be used to implement programmable
precision filter. As the required precision of coefficients decreases, the number of iterations
also decreases. For example:

Coeflicient Bit-Serial String Recoded
Precision Iterations [terations
5-bit = 5 3
10-bit = 10 5

That is, if the application requires less precision, one could demand a higher throughput.
VQ and filters differ only in accessing the operands y: VQ fetches a codevector y from the
memory, while FIR filter fetches it from a shift register acting as a tapped delay line.
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4.7 Conclusion

Variable-precision representation is noiseless encoding which is amiable to arithmetic. Unlike
other compression schemes not only it does not require costly decoding, it even reduces the
computational complexity. VPR determines the vector elements’ leading bits which are sign
extension. VPR avoids storing e( y) leading bits of each vector element. Instead, for each
vector, it stores the number e( y). In the radix-4 implementation, we also store an offset bit,
which marks if the number uses half of a radix-4 memory word. Over all, a VPR codevector

has four bits of overhead.

A VPR inner product is implemented. It processes the codevector element’s digit-serially,
and the source vector’s elements in bit-parallel. Incorporating string recoding, it achieves a
high throughput and demonstrates the issues in using bit-serial variable-precision represen-
tation and radix-4 evaluation. It has lower complexity than a sequential multiplier based
design. When used as a variable-time module, it also has lower complexity than conventional

multiply-accumulate approach.

We also noticed the effect of pipelining on inner product module. In a pipeline module,
evaluating 4-ary branch would take slightly less time (i.e., 2%) than evaluating two binary
branches. In two binary branches, since the two inner products are evaluated randomly,
the pipe is flushed twice. In a 4-ary branch, since the three inner products are evaluated
sequentially, the pipe is flushed only once.
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CHAPTER 5

Variable-Precision Classification (VPC)

5.1 Introduction

Classification is the cornerstone of digital signal processing. Originally, it was used in the
communication channels for distinguishing signals from noise. Now it also compresses sounds
and images [Gra84], [MRG85] being used as a vector quantizer. It also appears in recognition
system for speech [Kav86] or characters [NJ85], and in image segmentation [GBJMT9]. More-
over, cluster of classifiers are being evaluated for connectionist computations [Wid87]. Many
researchers develop and enhance systems using the classifier as one of the given building

blocks.

It was conventionally believed that as the precision of the operands increases, so would the
complexity of the classifier. For example, a conventional inner product based classification
which uses multipliers and adders would have O(n?) complexity with respect to precision n
since multipliers have O(n?) complexity with respect to precision. This chapter describes
variable-precision classification (VPC) algorithm and shows that the average computation
complexity is independent of operand precision. In practice, VPC can reduce the average
number of iterations by skipping evaluation of the unnecessary LSBs. This conveniently
complements VPR’s elimination of superfluous (zero) MSBs.

First in Section 5.2, we show how Binary VPC (BVPC) algorithm evaluates the discrim-
inant bit-serially to the necessary precision. Ensuing this, we derive an upper bound on the
operand precision necessary for determining the output’s sign. Next in Section 5.3, we derive
an upper bound on the average necessary-precision in BVPC algorithm. Finally in Section
5.4, we generalize Binary VPC to M-ary VPC, and let an auxiliary theorem generalize the
upper bound for BVPC to M-ary VPC.

5.2 Binary VPC

From Chapter 2, we determine the key operation in VQ as binary classification

2 if g(x,%5,%2) > 0

1 otherwise
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Operands VPC Evaluation of ¢(.) g(.) + e

Figure 5.1: Variable-precision classifier (VPC) computes ¢g(.) and its error.

Let’s define the discriminant ¢** which is output in binary fractional representation,

9 [log; (max(|Z(x.%* X") )]

9" (x) (5.1)

That is, ¢*" is the discriminant g(x,%‘,%") divided by the smallest power of two which
normalizes the discriminant. (|g*"| < 1). Arithmetically, g(x, X, %") is evaluated as ¢g*"(x).

Then, function g(x,%X*,%X") is replaced by its binary representation ¢g*"(x),

2 if g™ (x) > 0

c= (5.2)

1 otherwise

Figure 5.1 shows the key aspect of VPC: it calculates incrementally ¢(.) and its accuracy.
The evaluation stops when we determine the sign(g'*(x)). This is possible when the error
¢ is smaller than ¢(.). The average classification time may become significantly less than a
full-precision classification.

Before analyzing VPC further, let’s clarify the notion of precision. A signed fraction
has j bits precision iff the absolute error between the real fraction and its representation is
less than 277%1. In other words, we have included the sign bit when counting the number’s
precision.

Definition 1 (6) The necessary precision, 6, is the lowest precision in evaluation such that
the ignored operand bits do not affect the sign of the discriminant.

The least possible necessary-precision is denoted by ¢,
min( 6) (5.3)
In tailoring an architecture, this question arises: “What is the necessary precision to

determine the output?” As we’ll show, the answer depends on several factors such as: the
function g¢(.), the input vector x, the discriminant’s value, and the error interval e.
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Figure 5.2: Binary variable-precision classifier (BVPC).

Figure 5.3 shows evaluation of (5.2) with BVPC. As illustrated in Figure 5.2, x, and ¢**(.)
arrive bit-serially, with the most significant bit first. First, BVPC evaluates g(x, %", %*) using
the MSB of the operands. Then, BVPC increments the precision. After ¢ cycles, it can
terminate, delivering sign, and setting done flag. To find the necessary precision, BVPC
increments the evaluation precision by one bit at a time. Later when implementing BVPC,

we consider incrementing two or more bits per recurrence.

Figure 5.3 shows the content of the box shown in Figure 5.2. BVPC performs three steps

in every iteration:

1. Increment the estimate’s precision:

wlj] = 2wlj— 1]+ Gj*(x)

where w[j] is the estimate of the discriminant with j-bit precision vector elements:
wly] = ngl’Z(X) with j-bit operands

and G}Z() is the function of j which increments the estimate’s precision from (5 — 1) to
J bits. By doubling the estimate every iteration, we can often make G}Z() independent
of j. For initial ¢ iterations, since the output is zero, we skip steps (2) and (3).

2. Update the error interval. This accounts for increase in estimate’s accuracy: The error
interval is first set to INITIALBOUNDS. Subsequently, the recurrence updates the
error interval. At the j-th iteration, (¢[j],€[s]) bounds the error between the discrimi-
nant and its estimate:

elj] < 27gM*(x) — wlj] < €j]
Equivalently,
wli] € (Pg"*(x) + €ls], 279" (x) +€l))

3. Terminate if the estimate has the necessary precision. If w[j] € (€[], €[j]), the discrim-
inant needs to be more precise. We go back to step 1 for another iteration. Otherwise,
once w[j] exits the ambiguity interval (¢[j],€[j]), we can terminate. The precision
necessary to make the discrimination unambiguous is then j (6 = 7).

28



begin BVPC

(eé],€é]) = INITIALBOUNDS,

w[—1] = 0;

//Bit-serial recurrence

fory=0,1,...n—1
wlj] = 2ulj - 1] + G5 (x);
if j > & then ([j], €[j]) = UPDATE(elj — 1], ¢[j — 1], ));
if 7 > 6 then begin

+1 it wlj] = €]

sign = ¢ —1if w]j] < ¢[j]

U  otherwise //U = Undetermined
if (stign = —1 or sign = +1) then begin

2 if sign = +1

1 otherwise

terminate BVPC;

end if
end_if
end _for
2 ifwn—-1]>0
c =
1 otherwise
end BVPC

Figure 5.3: Binary variable-precision classification algorithm.

Even with full precision n-bit evaluation of the operands, the discriminant in (5.2) may
still be zero. We can decrease the number of ambiguous decisions by storing the vector
elements at higher precision. Later in the chapter, a lemma will show that linear increase
in precision results in exponential decrease in likelihood of ambiguities when discriminating.
With few zero discriminants, we arbitrarily have mapped these source vectors into ¢ = 2 as

was shown in (5.2).
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IIT---1 >0, where I = —1
Figure 5.4: BVPC as an on-line evaluation.

5.3 Necessary Precision

We can analyze variable-precision arithmetic in the framework of on-line arithmetic [EL88].
BVPC is a special case of on-line arithmetic, where operands arrive bit-serially, one bit at a
time with the most significant bit first. For the first (6-1) recurrences nothing is output, so
the output sign cannot be determined. Afterwards, at the iteration j, the (j-¢)-th MSB of
gjl-’Z(X) is represented with redundant binary Signed Bit (SB), where the bit ¢g; € {-1, 0, 1}.
SB inherits the following property from weighted binary representation:

lgi127 > > lgif2™ (5.4)
1=7+1
In other words, the weight of a bit is larger than the combined weight of all less significant
bits. Therefore, the most significant non-zero bit determines the sign: ¢; = +1 implies
sign = +1, and ¢g; = —1 implies segn = —1. As illustrated in Figure 5.4, BVPC terminates
the on-line evaluation at the output of the first non-zero bit.
Duprat and et. al. [DHMS89] constructed bounds for ¢, and tabulated the results for

on-line evaluation of common functions. For a single variable function with continuous
derivative, they showed the following bound,

df(z)
dx

§(7(0)) < |log, g

z€[0,1]

w +1 (5.5)
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Figure 5.5: The operand precision (in bits) necessary to determine sign of the normalized
discriminant g.

Given ¢ of an on-line function, we can construct the error interval for BVPC. At the
j-th iteration, the error interval is (—2‘j+é,2_j+é), J > 6. After evaluating 6 bits of the
operands, every recurrence halves the error bounds with respect to the estimate. This is
shown in Figure 5.5. The error interval can sidestep the update stage of the BVPC algorithm.
Since the estimate is conveniently doubled in every recurrence, the error interval can be kept
constant at (-1/2, 1/2). This resembles algorithms such as division and square root which
scale remainders.

In Figure 5.6, we show three examples of variable-precision classifications. The estimates
used in the three classifications are denoted by “+7, “x”, and “*”. The collection of error
intervals are normalized with respect to the initial interval and shown as é(¢). BVPC
terminates as soon as the estimate comes up from the uncertain region under the curve 6(g).
Even a simple function é6(g) will bound the average precision necessary for classification.

Theorem 1 A function of the discriminant, 6( g) is an upper bound on the necessary pre-
cision 0:

6<0(g)=06+|—log, |gl] Vg

Proof There is an integer m such that,

27 <g <2
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Figure 5.6: Instances of BVPC where 6(g) is aggregate of error intervals.

In words, we find an integer power of two which bounds g¢. Inverting the above equation:
m = [—log,(] ¢ |)]

In SB representation, m has a specific meaning. The significant bits z, ¢ > m have
a weighted sum less than 27™. For ¢ to be greater than 27, at least one of the most
significant m bits of g has to be nonzero. As stated by (5.4), the most significant nonzero
bit unambiguously specifies the sign. We then need at most m MSBs of the discriminant.
We may need less bits, due to the multiple representations possible for g.

Given m MSBs of g, by the on-line property of Definition 5.3:
6 < 4
< 64 [—logy | g ]

In other words, by evaluating 6 +m bits of the operands, we evaluate m bits of discriminant.
This upper bound is shown in Figure 5.5. O

Figure 5.7 puts the relationship among various variables into perspective. The lower
bound is §. The upper bound is é6(g¢), which itself it capped by n, the number of bits per
codevector element. In other words,

1<6<6<é(9)<n



MSB| | | LSB

g

Figure 5.7: The relation among various notations.

. . . . . . . . . 7 .
As a property of on-line arithmetic, the maximum discriminant’s precision n is é less than
the operand precision:

where the operands use nonredundant (e.g., 2’s complement) representation and the discrim-
inant uses SB representation.

5.4 Average Necessary-Precision

In binary VPC, average necessary-precision is usually independent of operand precision. The
average necessary-precision or average precision for short depends on the statistical character
of the discriminant g(x). Let’s define the probability density function (pdf ) of p(g) as

p(g) £ Tim pn(g)27" (5.6)

m— 00

In words, p(g) represents the probability mass function p,,(g) as m, the number of bits used
in representation of g, becomes large. We then use E[.], the expectation operator to denote
the average necessary-precision for p(g). Average of 6(g), E[6(g)] upper bounds the average
necessary-precision.

First, let’s show the average precision when the normalized discriminant is equally likely
for any value. If g has uniform probability of occurrence, (i.e., p(¢g) = 0.5) then on the average
less than (6+ 1) bits of the operands are sufficient regardless of the operand precision. As
seen in Figure 5.5, in half of the undetermined interval, a one bit increase in the estimate’s
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resolution determines the sign of ¢g. Equivalently, the probability of evaluating operand bits
decreases exponentially with their significance. As the operand precision increases, the sum
of this geometric series approaches 6+1 (= 6 + % + i + é + 11—6 + ...

To analyze the average precision, we have to answer: “What is the density of p(g) near
zero?” In particular, as ¢ approaches zero, p(g) weights more on the average precision. The
following states the key condition necessary for a bound on the average precision:

Definition 2 (non-singularity) The pdf p(g) is non-singular iff p(g) is finite in a finite
neighborhood of zero:
p(g) non-singular < finite @), Q) = (max )p(g)
ge _2—n72—n
where n s a nonnegative integer. In other words, () is the least upper bound of p(g), for
values of g small enough to need more than n bits to be distinguished from zero.

Discriminants, which we have encountered, have non-singular pdf. These include metrics
with sum, multiply, and absolute difference operations. The vector {Xx} and the vectors
{x} when generated by Gauss-Markov sources have finite pdf. Term by term multiplication,
or the absolute difference between two such vectors, would not create impulses in their
pdf. Since the resulting pdf is the convolution of the probability density functions of these
elements, summing the elements of the resulting vector also would not create impulses in pdf
of g. Consequently, the inner product between these vectors would not result in impulses
in the function p(g). Using similar arguments, the p(g) of the L; distance (sum of absolute
difference) is non-singular.

Our theoretical result can be better assessed in the context of theory of Information
Based Complexity (IBC) [TW91]. IBC evaluates the effect of precision of numbers on the
complexity of computations. In IBC, the worst case complexity is the longest computation
time of all the instances of the computations. For classification with metrics which use
multiplication and addition, the complexity grows as square of precision. The average case
complexity, on the other hand is independent of the operand precision and the discriminant
function. This runs counter to typical observations in IBC analysis, where the computation
becomes intractable as the precision increases.

Theorem 2 [f p(g) is non-singular in a finite neighborhood of zero, then average case com-
plexity of classification with respect to precision n is O( 1).

Proof Let’s calculate the average precision necessary for classification, E[ 6(¢)]. As Fig-
ure 5.8 demarcates, we evaluate the summation E[6(¢g)] in two parts: experimentally we can
determine the average precision necessary for a finite n. This will be denoted as E[6,(g)]
(E[6,(9)] < n). The discriminant precision n' (= n+§) will not be sufficient to classify when
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Figure 5.8: E[6(g)] evaluated as E[6,,(g)] plus an infinite geometric series.

the discriminant is within the interval [—217, 2%] Let this part be bounded by an infinite

geometric summation. Using [—o, 0] as a short hand for [—2%, 217],

E[é(g)] = lim > é(g)pa(9)

= _ii:l 6u(9)pn(9) + 2 8nlg)pal9) + lim ; 8(9)Pr(9)
= Eléu(9)] + lim X_: Pr(9)(6(g) —n)
= E[N)]ﬂgg{g@;p 27" (8(g) — n)

= B0+ | pla)(6(9)  n)dg

If p(g), g € [_T 2%] is non-singular then the upper bound on E[6(g)] is

Bl6(9) < Eléu(o)]+@Q [ (éla) ~n)dg
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< Els(9)]+2Q [ (5(9) ~ n)dg

As shown in Figure 5.8, the integration of 6(¢g) with respect to the domain is a simple
summation along the range. Changing the variable of summation to j:

=2

E[6(g)] < E[6.()]+2Qo( lim izi

m—00 4

1

E[é(g)] < EW(Q)H@

4Q)

O

Lemma 1 If p(g) is continuous then a simulation with sufficiently large operand precision,
n, can be extrapolated to the limit of n — oc.

Let p(g) be continuous iff it can be approximated by its mean p arbitrarily well in a
finite neighborhood ¢ € [—2%, 217] Basing the p(g) on Monte-Carlo simulations with metric
evaluations, mean g of the neighborhood becomes

_ p(n-bit eval.)
o= 9—n'+1

where p( n-bit eval.), is the probability of n-bit evaluation of the operands. And 9= +1 i
the width of the neighborhood.

If p(g) is continuous, then for a sufficiently large n, we can replace () in the theorem’s
upper bound for g. This will result in an approximate value for the average precision given
infinite-precision operands:

E[8(9)] < E[su(9)]+ z—”'“xcz

X
=
>
&)
+
NS
:
%
X
=

p( n-bit eval.)
X 2 n/—l—l

X
o
S
3
Q
+
[N]
:
e

O

To find a sufficiently large n' (= n + §), operand precision n is incremented in the
simulations until the probability of using n-bit precision halves at each increment. This
indicates that for the neighborhood [—217, 217], g is sufficiently small for the discriminant’s
distribution p(g) to be approximated well by its mean, p.
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With finite evaluation precision, ambiguous decisions cause higher error rate in classifica-
tion, and produce more distortion in vector quantization. However, as the next two lemma
encapsulate, these adverse affects decrease exponentially with respect to operand precision
n.

Lemma 2 [n classification with m-bit operands and sufficiently large n (m > n), probability
of an arbitrary decision follows this relation

Plg(x) = 0) o 27

With an experimentally measured n, p(g) can be approximated by u for g € [—217, 2%]

The additional (m-n) precision will decrease the occurrence of ambiguous decisions by 277",

a

Lemma 3 [In vector quantization with m-bit operands and a sufficiently large n (m > n),
the distortion becomes

E[(x = %°,)*] = E[(x = X°|,,)*] oc 277"

where (x —X°| ) is the quantization distortion with n-bit operands.

After increasing the precision beyond n-bit, the pdf becomes uniform. Each additional
bit of precision then can halve the distortion. a

5.5 M-ary VPC

We now extend binary VPC to M-ary VPC. From definition of VQ in Chapter 2, M-ary

classification is

c= max “'s(x,%') (5.7)

We can find the best codevector ¢ by (M — 1) binary classifications. Each binary clas-
sification would determine that one codevector is a better replacement than another one.
This is akin to removing the worst of the two from the list of codevectors contending for the
maximum. With (M — 1) binary classifications, (M — 1) codevectors would be eliminated
from the list. There will be only one codevector remaining. This will be the one most similar
to the source vector.

Figure 5.9 shows M-ary VPC (MVPC). MVPC uses variable-precision evaluation similar
to BVPC, except the estimate is generalized:

w[j] = 27 (s(x,%)) with j-bit evaluation
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Also, G}’Q(X) is replaced by G;(x,%"):
wlj] = 20lj — 1] + G;(x,%)

In the outer loop, ¢ is the index of the codevector with the highest similarity measure at
any iteration of i. The i-th iteration, 7 € {2,..., M}, chooses between the vector X' and the
vector X°. Finally after (M — 1) iterations, the index for best codevector is c.

To reduce computation, s(x,%°) which is the highest similarity measured at any iteration
of ¢, is stored as max[m], its precision is stored as m, and its error bounds are stored as &
and g:

g[m] < 2™s(x,X°) — max[m] < g[m]

In the inner loop, which follows the BVPC Algorithm, the notation is identical: The
variables are indexed by the iteration variable j. In the outer loop, for clarity, only the
transition of the variables from one iteration to the other are marked: The variable after

“worm

the execution of the assignment has superscript. Since M-ary VPC is based on binary

VPC, it also asymptotically requires a constant average precision independent of operand
precision.

Theorem 3 If p(s(x,%X))V(x,X) is non-singular, then the average case complexity of M-ary
classification ts O( 1) with respect to precision n.

Proof Using formulation (5.2) for classification between X* and %"

hoif g"*(x) > 0

1 otherwise

where ¢""(x) = s(x,%") — s(x,%'). From Theorem 2, the average precision for binary
classification between %' and %" is bounded, if p( ¢*") is non-singular. p(g¢“") is non-singular
if singularities of p(s(x, %)) and p(s(x,%")) (i # h) are finite distance apart.

The average precision for M-ary classification, E[6(g)] is

Ml_ -2 (El(@™), Vhet,..i—1)

1=2

E[6(9)] =

In words, it is the average precision in all the required binary classifications averaged over
(M — 1) classifications. Consequently, finite E[§(¢"")] = finite E[§(g)]. (For E[§(¢"")] to be
finite, it is sufficient if p(s(x,%*)) is non-singular Vi.) O
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begin MVPC

m = ¢;
mazls] = S5 279G (x,%);
c=1;

(c[8],3]8]) = INITIALBOUNDS;
fore=2,3,.... M
sign = U,
(e[6],€[8]) = INITIALBOUNDS:
w[—1] = 0;
fory=0,1,...n—1
wli] = 2ulj — 1] + G;(x.%);
if ( 7 > m ) then begin //Inc precision of max].]
(el + 1),0m + 1)) = UPDATB(elm], Zlml, §);
maz[m + 1] = 2maz[m] + Gnp1(x, X°);
m' =m+ 1;

//Bit-serial recurrence

end_if
if j > ¢ then (e[j].€[j]) = UPDATE(elj — 1],¢[j — 1],7);
if 7 > 6 then begin

+1if wlj] = €j] > 277 (mazx[m] — e[]);
stign = =1 if w(j] — ¢[j] < 2™ (max[m] —2[j]);

U  otherwise;

if ( sign = —1 or sign = +1 ) then terminate inner loop;
end_if
end _for
if sign = 41 or_if win — 1] > max[n — 1] then begin //Replace maximum
maz'[j] = wlj];
m' = j;
d =1
(el],Elh])" = (dil, el
end_if
end _for
end MVPC

Figure 5.9: M-ary Variable-Precision Classification Algorithm
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5.6 Conclusion

This chapter developed Variable-Precision Classification. VPC development fits in the con-
text of information based complexity (IBC). Unlike many other algorithms, the average
case complexity of VPC is independent of operand precision. Based on this, we presented
a general algorithm applicable with many metrics. First, we described binary VPC algo-
rithm. It bit-serially evaluates the discriminant to the necessary precision. Then, we derived
an asymptotically constant bound on average precision. This demonstrated that as the
operand precision increases, the average precision becomes independent of it. The bound
holds in practice, since it only requires the discriminant pdf to be continuous around zero.
Finally, the binary VPC algorithm was generalized to M-ary VPC, and we demonstrated
that the computational complexity of M-ary classification is also independent of precision.

70



CHAPTER 6

Vector Quantization with VPC

6.1 Introduction

Given the encouraging theoretical results from the previous chapter, we now assess variable-
precision classification (VPC) for vector quantization (VQ). As noted in Chapter 2, VQ
based compression represents a block of K pixels with the index of best matching codevector.
Specifically, VQ classifies an input block x into one of N codevectors y, where the number
of codevectors is large. For classification, it uses inner product. There have been several

inner product modules implemented for VQ [DB87, MJBD92, FCS90, KYJ93, DCG88], and

for pattern recognition[NJ85]. Inner product is a popular metric for classification.

The primary application of VPC is reducing the average evaluation time of VQ. Some of
the best VQ search algorithms require variable number of classifications per input. VPC be-
comes attractive since the encompassing computation also takes variable time. For example,
in PTSVQ [CLG88], searching the unbalanced tree requires variable number of classifica-
tions per source vector. This can mask the variable execution time of VPC. VPC can also be
used when the classification latency can vary. For example, in off-line compression, or even
in decoding in a packet switched network where the primary criteria is the average packet

transmission latency.

Another application is reducing the memory-processor traffic. Currently, the processor
chip uses different technology than the memory chip. These two different chips are often
housed in different packages. For every inner product we need to fetch one codevector which
is Kn bits. This results in extensive and costly inter-chip traffic.

In the next section, we show Binary VPC (BVPC) with inner product similarity measure.
Then in Section 6.5, we measure and demonstrate the asymptotic bound on average precision
for classification. We evaluate the performance for classification of auto-regressive sequences,
followed by vector quantization (VQ) of real images. Finally, we present a VQ architecture
using VPC, and discuss pipelining and digit-serial evaluation. In comparison to VPR and
conventional approaches, this architecture reduces the total evaluation time and memory-
processor bandwidth.
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6.2 Binary VPC with Inner Product

In this section, we describe the variable-precision evaluation of the inner product discriminant

g:
gi,h(x) _ Xtyi,h 4 pih

After briefly covering the theoretically optimal architecture, we described a scheme more

amenable to implementation.

For most benefit from variable-precision evaluation, both operands x and y can be eval-
uated with variable-precision. This would be theoretically optimal yielding O(1) computa-
tional complexity with respect to the operand precision. The architecture would result in
minimum number of full adders used for each classification. Basically, it would use serial-
serial multipliers, where we incrementally increase the precision of both x and y operands.
Despite its optimality, it has drawbacks. The throughput of serial-serial multipliers is noto-
riously low. Moreover, even though it evaluates bit-serially, it still requires registers in which
to store all the bits of codevector y and x which have been so far received. To increase the
throughput, we could use digit-serial processing with d digits, effectively evaluating n x n
multiplication, as m = n/d, d x d sub-multiplications. Even so for evaluating :-th digit,
we would need (2¢ — 1) cycles. Aside from the throughput, there is an even more impor-
tant drawback. If the codebook-processor bus has limited bandwidth, there is a mismatch
between processing and memory-processor data transfer.

Alternatively, only y can be evaluated with variable-precision. This would optimize the
memory-processor bus. Figure 6.1 shows the processor’s inputs and its interface to memory.
The source vector x is stored on-chip, and is evaluated at fixed-precision. For every bit
of the codevector element received, it takes one cycle to generate one full-precision partial
term. The architecture iterates on the elements of the vector y until the necessary precision
is reached. This actually simplifies the controller since the processor implicitly takes on the
task of buffering the source vector. On the other hand, variable-precision evaluation of only
y changes the complexity of classification to O(n).

Both approaches are variations on partitioning of a multiplier. The first design partition
the multiplication into d x d sub-multiplications, where terms evaluated at a given step
form a square tile of the multiplication. The second design partitions the multiplication into
partial term evaluation, where each of these 1 x d sub-multiplications form a thin slab of the

multiplication.

Figure 6.2 presents the Binary VPC algorithm, the center piece of this chapter. The
Linear-BVPC algorithm shown next is based on the Binary VPC (BVPC) algorithm pre-

sented in the previous chapter, where in each iteration one more bit of the codevector element
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K-dimensional codevector y is

Mog, K + 2n — 1] processed bit-serially from MSB
5 —

b —=

K sign(x'y + b)

e yiye —A | ready

Source vector x is

stgn

loaded prior to the classifications

Figure 6.1: Minimized memory bandwidth for BVPC with inner product.

is evaluated. The incremental evaluation of the function ¢g""(x) is

. — Yker Yots + 0" j =0
,h . = )
G¥Mx) = (6.1)

- ik .
SR Yi Tk otherwise

where y}c}; is the codevector’s k-th element’s j-th bit; and b“" is the bias term for the (i,h)
hyperplane. In other words to get the initial estimate w|[0], G;’h

sign bits. In subsequent iterations, it sums partial terms of the next significant bits of the

sums partial terms of the

codevector.

6.3 Sign Selection

In the previous chapter, Figure 5.5 showed the sign selection function’s outlook of the carry-
saved estimate. It has three regions: positive, negative, and the interim uncertain region
surrounding zero. As it inspects more bits of the estimate, the undecided region exponentially
shrinks. As soon as the detector finds a non-zero digit, it outputs the sign and signals to
terminate the evaluation. A sign selection function has as input the redundant estimate of
the inner product, and it outputs the sign in the earliest iteration possible.

In this section, we will describe three sign selection functions. All the three error intervals
are based on this inequality:

g(x) = [xy]
= |zyy1 + 2292 + ... + TRYK]
< lellya] + leelllyall 4 -+ ek |||y (6.2)

A stack of the error intervals, one for every step of the estimate refinement, forms the
sign selection function. First, we’ll show Interval A. It is an interval derived using on-line
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begin LINEAR-BVPC
(e,€) = INITIALBOUNDS;

fory=0,1,...n—e—1 //Bit-serial recurrence
if 7 = 0 then
wl0] = G5" (%);
else

wlj] = 2wlj — 1] + G7*(x);

+1 ifwlj] >€

sign =4 —1 ifw[j] < e

U  otherwise // U = Undetermined
if stgn = +1 or sign = —1 then terminate loop;

end _for
if sign = U then

+1 ifwn—e—1]>0
stgn =
—1 ifwhn—-e—1]<0
2 if sign = +1

1 otherwise.

end LINEAR-BVPC

Figure 6.2: Binary VPC with inner product similarity measure.
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methodology. Then, we will show intervals B and C. They are designed specifically for
variable-precision classification of inner product.

Interval A

The simplest interval to evaluate, Interval A, replaces x; and y; in (6.2) with (1 —2"71). It
results in the maximum magnitude of the inner product of two K-dimensional vectors with
n-bit elements:

Ix'y| < K(1 -2t —27" (6.3)
The bounds on Interval A are only dependent on j, the number of MSBs of y evaluated:
(XY lpobie = XY ljpig) < K(L =27 (277 — 27"+
We enlarge Interval A, to simplify updating it:
Ix'y| — (|x"y|with j-bit operands) < K (1 — 27"**1)2~

As seen in the above equation, the interval for the iteration (5 + 1) is half of the interval for
the iteration j. This is achieved by doubling of the estimate in every iteration. As a result

Interval A does not need updating:
INITIALBOUNDS = [-K(1 - 27" K(1 —27"*)]

As we will similarly see next with Interval B, any interval which is independent of the
variable-precision operands, neatly avoids the update step. Since the intervals would all be
shrunk with the same factor, the ratio of succeeding intervals remains a factor of two.

Interval B

Interval B starts by replacing the maximum sum of elements of y; shown in (6.2) with the
actual summation:

K
x'y| < max(|y1|,|y2|,...,|yK|)E ERA (6.4)
k=1

In general, this is an instance of Holder’s inequality with ¢ — oc:
x'y| < x[pllylls 1 <pog <05 L/p+1/g=1

This interval is much smaller than interval A. Instead of maximum value of elements,
it uses the summation of elements. For example, with uniformly distributed elements of x,
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it is half the size of Interval A. The difference between these two interval increases after
evaluating the partial terms which depend of the sign of y. The inner product’s upper and
lower bounds are different than formulated in (6.4):

K K

. : t ‘
e () Yo min(es,0) < X'y < mas, (el) 3 max(, 0

In other words after the first cycle, a partial term will be positive iff the corresponding
element of y is positive, and otherwise the partial term will be negative. Now, we can
evaluate each bound separately. The elements of x are summed into two groups. One group
is the summation of positive elements, the other of negative elements. For a uniformly
distributed element probability, Interval B becomes one fourth the size of Interval A.

The upper bound is the sum of the all the positive x elements multiplied by the y
element largest in magnitude. The lower bound is the sum of all the negative elements
of x multiplied by the y’s element largest in magnitude. Both summations are computed
prior to the classifications of the source vector. To simplify evaluating the initial interval
and updating it, we substitute the maximization by 1, which is slightly greater than the
maximum possible magnitude of y; (i.e., 27"*!). This simplifies the bounds’ update. The
upper and lower error bounds become

K

K
> min(zg,0) < x'y < Y max(ay,0)
k=1 k=1

where max(zy,0) is an unary operator which substitutes 0 for all the negative elements and
outputs the positive elements unaffected. Similarly, min(zy,0) permits selection of all the
elements which are less than zero. This is used as a convenient means of showing summation
of negative elements.

With 5 + 1 bits of y evaluated, the error is bounded by

K K

2177 > min(x,0) < Xy i — XY < 277 3 max(ay,0)
k=1 k=1

Similar to Interval A, Interval B does not require updating of the initial bounds,

K K
INITIALBOUNDS = (Z min(z, 0), Z max(z,0))
k=1 k=1

Interval C

Interval C swaps x and y in Interval B. Interval C replaces x; in (6.2) with max(|z;|):

K
Ix'y| < max( &1, T2y ..., LK) Z |y | (6.5)
k=1
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In words, it swaps x and y in (6.4). Shown variations of bound C, use different information
about codevectors y to upper bound (6.5). We discuss it for comparative purposes only.
Even when looking at its variations, Interval C is more costly than Interval B and does not
perform as well. It can, however, give some insight.

In the simplest version, by inspecting y, it replaces K in the Interval A by an equal or
smaller integer, L. L is the maximum number of bits of the same significance which are ‘1’
across all elements of y. Since the maximization is among codevectors’ elements, it can be
precomputed and stored.

As evaluation progresses, L could potentially decrease. We can also narrow Interval
C by updating L in every iteration to exclude the bits already evaluated. This, however,
complicates the updating and further increases the bandwidth. We could further narrow
the bound by making it a function of received vector x. The initial bound, however, would

require a multiplication.

We believe Interval B is preferable to Interval C. When x and y are statistically similar,
Interval B which is the actual evaluation of the summation, bounds the inner product tighter
than Interval C. In terms of hardware, Interval B requires only two accumulators and one
additional comparator. Instead of these, Interval C needs more storage and bandwidth for
the codebook. When a codebook is off the chip, then there is also additional off-chip traffic
to bring in the Interval and its updates. This can be prohibitive.

Example of Binary VPC

The example shown in Table 6.1 and 6.2 uses BVPC to classify between X' and %X* of the
example previously shown in Section 2.5. The precision n of a two’s complement element is
eight bits (n = 8). The inner product of four elements requires 18 bits (log,(4 x 2% x 27) 4+ 1)),
which includes one bit for the addition of the bias b.

Table 6.1 illustrates the variable-precision classification with Interval B, where x = (-5,-4,
4, 5)t, and y = (-100,-10,10,100)*. As shown the first two iterations would suffice for the
classification, even though all eight iterations are shown. Bits of the multiplier are shown in
two’s complement binary system. For ease of display, all other values, which were fractional,
are scaled by a factor of 128 and are shown as decimal integers. The scaling does not affect
any other aspect of the algorithm. The Table 6.2 shows the same classification with the
intervals B and C. In this example, Intervals A, B and C require five, two and five iterations
respectively. In the following section, we characterize BVPC using VQ of images.
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Table 6.1: Example of BVPC with x = (-5,-4, 4, 5)*, and y = (-100,-10,10,100)".

j | Multiplying | Added | Added | Estimate | Interval | Sign
Bits Partial b (w[j]) B

(y1,Y2,Y3,Y4); | Product | Term

0 (1,1,0,0) +9x128 | -10100 -8948 | —— U

1 (0,1,0,1) +1x64 0 -8884 | -576,576 | -1

2 (0,1,0,1) +1x32 0 -8852 | -288,288

3| (1,1,0,0) | -9x16 0|  -8896 | -144,144

4 (1,0,1,0) -1x8 0 -9004 | -72,72

5 (1,1,0,1) -4x4 0 -9020 | -36,36

6 (0,1,1,0) +0 0 -9020 | -18,18

7 (0,0,0,0) +0 0 -9020 -9,9

Table 6.2: Iterations of example classification with Interval A, B, and C.

j | Estimate || Interval | Sign || Interval | Sign || Interval | Sign
w(y] A B C

0 -8948 — 1 U — U — | U

1 -8884 65024 | U || -576,576 | -1 48768 | U

2 -8852 32256 | U || -288,288 24192 | U

3 -8996 15872 | U | -144,144 11904 | U

4 -9004 7680 | -1 -72,72 5760 | -1

5 -9020 3584 -36,36 2688

6 -9020 1536 -18,18 1152

7 -9020 512 -9,9 384
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6.4 M-ary VPC

For completeness, we will show M-ary variable-precision classification with inner product
metric. It is based on the general M-ary VPC presented in Figure 5.9, where the similarity
measure has been set to inner product. The algorithm 6.3 has been modified to avoid
intermittent increasing of the maximum’s precision. Variable-precision evaluation of the
maximum would decrease the average precision, but it would make pipelining difficult. In
middle of an inner product, we might have to break the current pipelined evaluation to
evaluate one more bit of the codevector which yielded the current maximum. Alternatively,
when the inner product is replacing the current maximum we evaluate it to full precision.
Then, for sign selection, the current maximum is subtracted from the estimate and the result

compared against the interval.

M-ary evaluation is based on Equation (2.15) in Chapter 2. We incrementally refine
the estimate w[j] of (x'y® + b;). After each refinement, we compare it against the current
maximum. When the sign of the difference is unequivocally negative or it is unequivocally
positive but the inner product is with the last codevector y*, we terminate evaluation. M-ary
classification’s performance is comparable to binary classification. The bias term b; reduces
the number of new maximum’s and hence the number of full evaluations.

6.5 Statistical Analysis

We measured the sensitivity of BVPC to variance, correlation, and vector dimension using
Auto-Regressive (AR) sequences. As discussed in Chapter 3, AR sequences are made of
correlated random variables which have identical PDF. Each random variable in the sequence
gets a fraction of the previous element summed with an independent Normal source, with
zero mean and o2 variance. AR sequences synthesize the PDF and the correlation of sample
sequences of natural sounds and images:

z; = N(p=0,02=0?)
zry = prr1 + N(p=0,02=0*(1-p%) k=2,....K

2

where variance of z, o7 is

2
2 Oy

$:1_p2

g

and p is the variance-normalized correlation between zj and z;_;. In VQ of image or speech,
the vector ylinearly depends on the center of a cluster of source vectors x. When modeling
the source vectors as AR sequences, y becomes an AR sequence. The o, and p were chosen
from among measurements on a set of 20 images. We also normalized the pixels. This made
o, independent of the number of bits in the pixel representation.
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begin LINEAR-MVPC

maz = 0;

c=1;

for:=2,3,.... M //M — 1 binary classifications
sign = U,

(c,€) = INITIALBOUN DS;
w(0] = — Y lykn 1)xk‘|‘bi3
//Bit-serial recurrence
forj=1,2,...n—e—1 //n — 1 other partial terms
wlj] = 2wl + 1] + LI, yiyek;
dif f = w[j] — 279 mazimum;

41 ifdiff+e>0

sign = —1 ifdiff +e<0
U  otherwise
if sign = —1 or ( stgn = +1 and ¢ = M) then terminate inner loop;
end _for

if stgn = U then
. +1 if wn —e—1] > max
sign =
—1 ifwn —e—1] < mazx
if stign = +1 then begin
maw = w(j];

¢ =1 //Best matching codevector

end_if
end _for
end LINEAR-MVPC

Figure 6.3: M-ary VPC with inner product similarity measure.
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Similar to VPR simulations, these simulations were cross checked. First to verify cor-
rectness of the VPC algorithm, a conventional classifier cross checked every decision of VPC.
This assured that the evaluated precision was sufficient. Then, we verified a simple simula-
tion using the previously shown theorem. Given one element vectors y = —1 and x uniformly
distributed, we have observed the theoretically predicted pdf and average precision.

To observe the effect of the sample set on the simulation results, two different random
number generators were used. We classified sets of 10,000 pseudo-random vectors {x,y}.
Then for each curve, one of its points was re-ran with an alternative random number gener-
ator [PFTV88]. This would check not only for anomalies in the random number generator
but also in the sample size. Little difference would assure us that the general behavior of
the system and the conclusions we draw from the graphs were independent of our sampling.
The change in pdf between the simulation runs using the two pseudo-random sources was
small. From our observation of average precision, it was less than 0.025 bits ( < 2%). Since
the results were close, we were assured that the 10,000 classification taken in the first run
were good indicator of the discriminant pdf.

The elements of the sequence were evaluated at 10 bits. It was an 8-bit positive pixel
which had gone through processing. In subtraction from the predicted image, it acquired a
sign bit, and in subtraction from the nearest centroid codevector, its dynamic range increased
by one bit. As we will also see, this can be extrapolated to the case of infinite-precision
numbers.

Asymptotic Bound on Average Precision

Figure 6.4 shows the asymptotic bound on average precision as the operand precision in-
creases. The necessary precision was evaluated for a set of 10,000 classifications. Since
none of the classifications required more than 10-bit precision, and presuming we have zero
probability of 10-bit necessary-precision because of the small sample set,

p(6 >n)<107° (6.6)

At 10-bit precision, we have a very good estimate of the infinite-precision case. Using
Lemma 1 from Chapter 5, we can now extrapolate to the infinite-precision case:

E[8(g)] ~ E[8.(9)] +2p(6 > n) < E[8.(g)] +0.002 (6.7)

where we have substituted for p(é6 > n) its upper bound from (6.6). The average precision
is approximately 0.002 bits more than the average precision with 10-bit operands available.
For all practical purpose, the simulations depict the infinite-precision case.
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Figure 6.4: Average precision versus operand precision.
Sensitivity

Figure 6.5 shows average precision has little sensitivity to operand variance. Three curves
show the sensitivity of average precision for statistically different operands. The operands
are the 16 elements of a vector with p=0.98. As shown, normalizing the gain of the vector
(i.e., GSVQ) makes the VPC performance independent of the vector element’s variance. To a
lesser extent, removing the mean of the vector which reduces the variance of the elements (i.e.,
MRVQ), also reduces its sensitivity. Even for unprocessed vectors, however, our simulations
shows surprising little sensitivity. This suggests VPC is inherently independent of operand
variance for other reason. We believe that this is due to VPR representation of vectors.
To reduce storage, VPR normalizes a block of floating point numbers. In an arithmetically
benign way, VPR is normalizing the gain. Next we set the variance o2 = 0.029 and plot the
relationship of average precision with the correlation coefficient.

As can be seen in Figure 6.6, as correlation increases, the average precision decreases.
This phenomenon can be described by the Central Limit Theorem. The theorem states that
when independent random variables are added, the resulting pdf will approach a Normal pdf.
When correlation is zero (p=0), all the elements of AR sequence are completely independent.
Element by element multiplication produces independent random variables. The resulting
discriminant pdfis similar to a Normal pdf. Asthe correlation approaches one, the elements of
AR sequence become dependent. Inner product of these elements, reduces to simply scaling
one of the identical elements. Since in our simulations we had used a uniform pdf, a low
value discriminant has lower density near zero than the bell shaped Normal pdf has. Since
small discriminants require higher necessary precision, higher correlation results in lower
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Figure 6.5: Average precision E[é] versus vector variance o?.

average precision. For example, even if the element pdf was a double sided exponential pdf,
for p — 0 the discriminant pdf would again approach the Normal pdf as stated by Central
Limit Theorem. In general, regardless of element pdf as correlation increases the average
precision should become similar.

6.6 Experimental Results

To experimentally gauge the average precision, we compressed real images. In specific, we
selected two images from USC data base : Baboon and Lena. Lena represented images
composed primarily with low frequencies. Baboon, also known in literature as the mandrill,
represented images composed of primarily high frequencies. Both were 256 x 256 pixels and
were compressed using mean-residual VQ (MRVQ) with pruned binary trees (PBTSVQ). The
number of elements in the codevector were 16 (K = 16), while the number of codevectors in
the pruned tree ranged from 466 to 1906 codevectors (N = 466, ---,1906).

The negative slope of the curve is as a result of the change in characteristics of the
codevectors it is classifying among. As can be seen in Figure 6.7, as the compression error
decreases, the average precision increases by 0.5 bits in both images. For Baboon, the increase
is from 3.1 to 3.6 bits. For Lena, the increase is from 2.4 to 2.9 bits. For better compression
VQ has to classify among codevectors which have less distance from each other. However, we
do not believe this increases the average precision. In the last section, we showed that due to
VPR, VPC is to a large extent independent of codevector variance (i.e., average distance).
We believe in a more subtle reason: the type of the clusters the codevector is representing
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Figure 6.6: Average precision E[é] versus vector correlation p.

differs. For better compression, random details are encoded. These are harder to group
into clusters than the smooth details. The same factor which impedes the performance of
VQ, also impedes the performance of VPC. In worst case, the VPC improvement solely
would come from eliminating the leading zeroes in VPR representation. This bounds the
average-precision at average storage precision (i.e., & 6 bits for 10-bit operands).

The trends in the two curve and the gap between them seem to depend on the same factor.
The average precision depends on the type of the cluster the codevector is representing. VQ
of Lena entails classifying between well defined codevectors differentiated with few key low
frequencies. On the other hand, VQ of Baboon entails classifying between codevectors which
have irregular high frequency content. Such codevectors would have less well defined clusters
than those used with the image of Lena. As a result, the average discriminant would be closer
to zero, causing higher average precision.

6.7 Two Sign Selection Functions

In this section, we quantitatively compare Intervals A and B for sign selection. Interval A
was used to theoretically show that the average precision has an asymptotic bound. It was
designed based on an on-line signed-digit converter. Interval B is optimized for an early
output of the sign (i.e., a non-zero digit). It narrows the bound based on the source vector
elements. We will look at its increased performance in light of increased complexity. First,
we will quantify the advantage of Interval B in performance. Then, we will describe the
required additional hardware.
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Figure 6.7: Average precision E[6] versus VQ mean square error.

Performance Comparison

Figure 6.8 shows that Interval B is far preferable than Interval A. In the simulations, Interval
B implemented specifically for VPC application improves the performance by more than a
factor of two for zero mean sequences. The vector dimension was varied from 2 to 64. In
both curves, due to Central Limit Theorem, as the vector rank increases the discriminant’s
pdf becomes more bell shaped around zero. Although in both cases the average precision
increases, the trend is slower with Interval B. While Interval A grows with the maximum
value of the discriminant. Interval B performs better. By summing the elements’ magnitude,
it tracks the discriminants far better.

Evaluating Interval A

The Signed-Digit (SD) converter forms the core of the composite sign detector. For E[¢]
iterations, the signed-digit adder converts two MSBs from carry-saved into signed-digit form.
If all the converted digits are zero, the remaining lower significant bits of the redundant
number are inspected. The LSBs of PS and CS are added to with n 4 log,(K) bits precision
(i.e., PSp_1, -+, PSan_1410g, (i) and CSy_q, -+, CSap_1410g, (k). Since we only need the carry
out in the addition, the circuitry can be simplified into Carry Look Ahead (CLA) circuitry.
In gate arrays, CLAs are both fast and cost effective. Since this is on the critical path, the
addition is done in parallel. On the other hand, the probability of inspecting LSBs is low,
and we could also wait another cycle for its evaluation.

The SD converter adds the Pseudo Sum (PS) and Carry Saved (CS) terms. A one bit sign
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Figure 6.8: Average precision in classifying K-element auto-regressive sequences.

extension allows treating each term as a two’s complement number. The two’s complement
number is mapped bit by bit to a SD number. If the MSB is one, it is mapped to negative
one (I). Otherwise each bit is copied unchanged. The one-bit sign extension would have
assured that the MSBs which are being converted will not change by subsequent addition
of less significant partial terms. These remaining partial terms collectively have the same
maximum value that the last partial term had. Subsequent additions cause at most a carry
from the last partial terms MSB, which are absorbed by the extra bit of the sign extension.

To design the SD converter, we simplify an SD adder for its two input PS and CS. Since
PS is at most half the value of CS, the SD representation does not require more bits to
represent. As shown in the table 6.3, the MSB outputs zero transfers (7' = 0). In radix-4
conversion, moreover, the remaining digits of PS and CS are positive. Therefore, there are
no negative transfers (7' € {0,1}).

Evaluating Interval B

Variable size of Interval B results in more elaborate evaluation and comparison when com-
pared to Interval A. The bounds on Interval B are not fixed. We need to precompute these
for each source vector. For this, we need two accumulators. One accumulator sums the
positive elements. The other sums the negative elements. These accumulators are active as
x is being loaded on-chip for classification. Afterward, Interval B requires two high precision
comparators. This lengthens the critical path. To investigate the tradeoff between the com-
parator precision and the average necessary-precision, we did simulations with VQ of Lena.
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Table 6.3: Converting carry-saved into signed-digit form.

T=0 T=1
PSy,PS; | PSo, PS5y | PSo, PSy | PSo, PS5y
C'Sp, C5y 00 01 00 01
00 00 01 01 00
01 01 00 10 01
10 10 11 01 10
11 11 10 00 01

In specific, the picture was 256x256 pixel and the codebook had about 2000 16-dimensional
codevectors. In each simulation, about 45000 classification were done.

As seen in Figure 6.9, we loose little in performance by looking at the 11 MSBs of the
estimate. The knee of the curve is at n < 10. When the comparator’s precision is decreased
further to 11-bit the average precision increase is still less than 0.2 bits.

As shown in Figure 6.9 as the precision of comparator approaches two bit n = 2, the
performance of Interval B approaches that of Interval A. The comparators for Interval B
would simply evaluate digit-serially from MSB to LSB, comparing 2-bits in each cycle. This
resembles the performance for Interval A. Interval A, which acts as an upper bound on
performance degradation, is basically a two bit comparator. This is because the bound in A
is approximated a power of two. The bound A is comparing against a number whose only
one is in MSB position. In other words, Interval A is a sign selection function which is given
only the two MSBs of the estimate.

Figure 6.10 shows the circuitry to calculate the error Interval B. For each received source
vector x, the bounds (g, €) are initialized as follows

(e,€) = (2 min(zy, O),zjgmax(:ck, 0))

There are two accumulators, for the two bounds €, and €. Since we exclusively add an element
into the upper bound or into the lower bound, the two accumulators can share their adder.

Figure 6.11 shows comparison of 11 MSBs of redundant estimate against the two error
bounds. The comparison occurs for each of the first (n — e — 1) cycle. In the last cycle,
we stop comparing against the error bounds. Instead, a full-precision evaluation determines
the sign of the estimate. As shown, for the full-precision comparison one of the error bound
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Figure 6.11: Interval B sign selection circuitry.

comparators is used in conjunction with a 12-bit carry look ahead circuitry.

Cost

Although Interval A is simple to evaluate, Interval B doe not require a lot of circuitry either.
When K is either a power of two, or is replaced by the next greater power of two, Interval A
requires only a simplified signed-digit adder and a log(K) + n carry look ahead circuit.
Evaluation of Interval B, on the other hand, needs one log(K') + 10 adder and two registers
of the same size to compute the bounds. Although it requires more elaborate sign detection
circuitry than Interval A, the increase in complexity is offset by more than a factor of two

reduction in average precision necessary for classification.

6.8 VPC Architecture

We now show a simple way to design bit-serial architecture. Starting from the VPR design,
it is modified for variable-precision classification (VPC). It minimizes the evaluation time
and memory-processor traffic, since it can vary the precision one bit at a time. When it can

meet the throughput, it is preferable for implementation.
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Figure 6.12 shows the VPC architecture. While, it evaluates all the partial products of
same significance concurrently, VPC can reach a decision with fewer iterations then VPR.
VPC implementation differs from VPR in two aspects. First, the order of bit-serial evalu-
ation is changed. VPC evaluates from MSB to LSB in an on-line fashion. Second, its sign
detector is more sophisticated. Using two comparators, it decides on an early termination
of evaluation. At the end of every iteration, the two comparators check the estimate against
the lower and upper bounds on the sign selection interval. When either comparators can
decide, the sign is output and the done flag raised.

Since VPC uses redundant representation in accumulating the estimate, can VPC also
benefit from redundant operand representation?  First, let’s look at the codevectors and
whether we may gain anything from precomputing and then storing them. Since storage
access and cost are a key factor in the VQ design, any advantage which is gained from
redundant representation will be very costly. Unlike codevectors, the source vectors are not
stored. Their computation cost would be lowered by redundant representation. This would,
however, shift the burden to VPC. In mean-residual VQ, VPC is K times more complex than
the source vector preprocessing. Redundant representation only seems more relevant with
source vectors. Redundant source vectors, would effectively double the number of terms to
be generated and summed in the VPC inner product. This makes redundant source vectors
also unattractive. Both for codevectors and source vectors, VPC does not favor redundant
representation.

In an M-ary classifier, instead of just detecting the sign of the -th estimate, the classifier
compares the estimate with the maximum of the (¢ —1)-th inner products evaluated. The data
path expands into two subtractors and a sign detector. In every iteration, the inner product
with its two error bounds are subtracted from the maximum. If the sign is ambiguous, the
evaluation continues. If the sign of the result is positive, its evaluation terminates. Otherwise
if the sign of the result is negative, it evaluates the inner product at full precision and replaces
the current maximum. At the last inner product, we can evaluate as a binary classification.
After determining the sign we can output the index. Since in the last inner product we do
not need to store the new maximum, there is no need for a full-precision evaluation.

VPC Controller

Figure 6.13 shows the timing of VPC for binary classification. The processing period for
each bit y; ; consists of three parts: (i) fetching the j-th bits of y from memory, (ii) summing
the partial products, and (iii) deciding whether to continue or terminate the iteration. As
indicated in the figure, these parts can be overlapped. Such an architecture is attractive for
low rate video and speech.

VPC controller is similar to VPR controller, except it also monitors done flag. VPR
controller would enhance the design by Holmberg [Hol90] with a counter. The counter at
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Figure 6.12: Architecture of binary linear VPC.
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the beginning of each evaluation is loaded with the precision of the inner product. VPC
controller adds one more modification. The termination signal can be generated either by
a count down to zero or when the done flag is raised. With Interval B, the controller also
manages the accumulators which during loading of the source vectors evaluate the upper
and lower bounds.

Implementation

Combining the VPR implementation with some design modification, we had an accurate
estimate of the cost and performance of VPC. The specification and the throughput were
not changed (e.g., K = 16 and n = 10, MPEGII). As shown in Figure 6.14, the VPC data-
path was also similar to VPR data-path. This simplified the controller and reduced the
partial product generator to just nine (= n — 1) AND gates. The primary difference was
the sign detector that output every iteration. We also changed the order of evaluation of

operand bits to be from MSB to LSB.

Similar to VPR implementation, in VPC variable-precision addition of the hyperplane
bias term b would reduce the memory-processor bandwidth. With an off-chip codebook, the
number of I/O pins can be an issue. Variable-precision addition of bias can reduce the 20
pins required by the specification (e.g., K = 16 and n = 10) to four pins. In a radix-2 VPC,
with every bit of inner product, two bits of bias term are added. We believe there will be
only a small affect on the average precision. Even though, the bias term is not added in full
precision, its precision increases at twice the rate of the terms in the inner product. For the
typical classification, which results in three bit average precision, E[6] = 3, the bias term will
have six bits precision. In this case, the estimate itself will have around six bits precision.
When the memory-processor bandwidth is at premium, the cost of multiplexing b should be
negligible.
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Figure 6.14: VPC implementation.
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6.9 Throughput

For the shown design, the throughput would be far lower than what was shown in Chapter 4.
Even so VPC would still compress 1/4 CIF video which inputs 760 x 10® pixels per second
1. Next we will look at two ways of increasing the throughput: digit-serial evaluation and
pipelining. As we will see pipelining alone permits sufficient throughput for MPEGII ? data

rates.

Increasing Throughput

We have shown a simple bit-serial architecture. By increasing the precision one bit at a time,
it uses the minimum number of iterations for evaluation. Bit-serial evaluation, however,
requires E[é] cycles per classification. This limits the throughput.

An obvious way to increase the throughput is to use several inner product modules. This
high level parallelism is attractive when the required throughput is very high. Although we
may not be able to take advantage of variable number of iterations, it would be attractive
for reduction of energy dissipation/consumption. For future work, we could look at it. In
here, we will focus at increasing the evaluation radix and/or pipelining.

When the evaluation is bit-serial and non-pipelined for typical operand precision, VPC
is preferable choice for implementation. On the other hand, the throughput requirements
may force us to use a digit-serial and/or pipelined evaluation. For what operand precision is
VPC better than conventional approach? To answer we use the notion of sufficient-precision
3, which is the number of bits which are evaluated. Sufficient-precision § adds the affect of
implementation detail to the calculated necessary-precision 6. For a bit-serial non-pipelined
VPC module, the sufficient precision is same as the necessary precision (3 = ¢). Next, we'll
quantify the increase in precision (3 > 6) for pipelining.

Pipelining which was proposed for VPR, can be used with VPC. Pipelining the VPC
module is similar to pipelining the VPR module shown in Chapter 4. Pipeline latency,
however, incurs higher cost. In an M-ary VPC module, we need to look at the output after
every iteration. In a simple [-stage implementation, this comparison is delayed by (I — 1)
cycles. The sufficient-precision § becomes

b=64+1—1

In other words, an [-stage pipeline increases the average precision by [ bits.

The degradation caused by pipeline latency can be avoided. We can interleave evaluation
of I classifications. To do so we would evaluate [ classifications independently. The [ stage

1176 x 144 pixels (1/4 CIF) at 30 frames/sec = 760,320 pixel/sec
2720 x 576 pixels at 30 frames per second
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pipeline then achieves a factor of [ more throughput than a non-pipelined system. This
could permit high level of pipelining. We can have full bit-level pipelining of the summation
network and the comparator pair. On the other hand, the interleaved evaluations does
require on-chip buffering of each interleaved source vectors, and a more elaborate controller
to track these concurrent classifications.

We could increase the throughput by increasing the evaluation radix. In a radix-r archi-
tecture, the time taken in number of iteration 7'(r) becomes

T(r) =

N log, r

The above multi-fold increase in throughput is applicable whenever the function can be
evaluated in parallel. It would not be realizable for metrics using operations such as division.
With inner product metric, where fully parallel evaluation is possible, there is no limit on
the radix (e.g., r = 2").

The drawback is increase in the sufficient-precision. The increase is due to evaluating
log, r bits at a time. Sufficient-precision § could be as much as

3§5+10g2r—1

where we assumed the worst case of evaluating one digit, while only evaluation of one bit

was necessary.

Assuming uniform discriminant pdf, radix-4 evaluation increases the average precision by
one bit. In radix-4, two bits of the multiplier are needed for each partial term. In instances
when the number of bits to give the sufficient precision is odd, even number of bits is
evaluated. In these instances, radix-4 multiplication results in an estimate with superfluous
accuracy. Similar to VPR design, there is also overhead due to misalignment of packed
codevectors. With uniform pdf, the sufficient-precision becomes

6

X

(&%
+
o

In a pipelined radix-4 implementation, the difference between the necessary and sufficient-
precision is two-fold,

S b+2(—1)+1.0

where the 1.0 bits overhead is incurred when fetching two bits at a time.

String recoding which was used in the implementation of the VPR architecture, can also
be used with VPC architecture. In the VPC, the string recoding starts from the MSB,
incurring one bit delay. String recoding from MSB is similar to string recoding from LSB.
When starting to recode from MSB, expecting a carry, we delay the output by one cycle.
Recoding from MSB requires sign extension to implicitly delay by one clock cycle. To send
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Table 6.4: Memory bandwidth of VPC versus VPR design.

Pipeline | CK | Avg(Worst) | Avg(Worst) | BW | BW x T(x107)

level] | [ns] | Time[cycle] | Time[ns] [pin] | [pinxsec]
VPR |2 20.7 | 5(7) 103.5 (144.9) | 42 | 4.35 (6.09)
VPC |3 14.8 | 5.6(12) 82.9 (178) |24 | 1.99 (4.26)
VPC | 5 8.3 | 7.6(14) 63.1 (116.2) |24 | 1.51 (2.79)
VPR | 6 8.3 | 9(11) 74.7 (91.3) [ 42 | 3.14 (3.83)

only two bits per cycle to the recoder, we extend the sign inside the recoder by one bit. In the
first cycle, then we get three bits out of only two received bits. For a multiplicand with odd
number of bits, the multiplication does not need additional cycle. The sufficient-precision

shown in the previous equation remains valid.

For VPC to be attractive in exhaustive searched VQ, the operand precision n should be
greater than the sufficient precision 5 where & incorporates the cost of pipeline break. This
does not apply for binary searched VQ, where after the inner product and pipeline break
occurs as we determine which branch to take.

6.10 Comparison

VPC reduces the computational complexity both in terms of execution time and area. In-
stead of radix-2 partial product generators used in VPR, VPC module uses radix-2 genera-
tors. Even though, VPC requires an elaborate sign detector with comparators and initial-

Table 6.4 shows the clock

cycle (CK), execution time and the pin counts of the competing architectures. Even though

ization of bounds, the overall gate count decreases about 15%.

VPC evaluates bit-serially, eliminating superfluous LSBs decreases the execution time from
that of radix-4 VPR. Table 6.5 shows that both AT and AT complexity measures decrease
by more than 20%. Table 6.4 shows that the VPC is also quite effective in reducing the
memory bandwidth used by more than a factor of two. This is to a lesser extent due to
radix-2 evaluation, which fetches only the bits of the required codevector.

When pipelining is incorporated, VPC remains preferable to both VPR and conventional

designs. VPC reduces the overall execution time. Even though pipelining increases the
average precision, it similarly affects VPR. VPC due to its shorter overall critical path can

be pipelined with one less level than VPR. As a result the overall execution time of a radix-2
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Table 6.5: Performance and cost of VPC versus VPR design.

Pipeline | Area | CK | Avg(Worst) | AT x 102 | AT? x 10=12

level] | [gate] | [ns] | Time[cycle] | [gatexsec] | [gatexsec?]
VPR | 2 9100 | 20.7 | 5 (7) 0.94 (1.32) | 97 (191)
VPC | 3 7492 | 14.8 | 5.6 (12) 0.62 (1.33) | 51 (236)
VPC | 5 8230 |83 | 7.6 (14) 0.52 (0.96) | 33 (111)
VPR | 6 11164 | 8.3 | 9 (11) 0.83 (1.02) | 62 (93)

VPC is less than a radix-4 VPR. VPC, less pipelined and with radix-2 multiplication, can
be implemented with fewer circuitry than VPR. Radix-4 design on the other hand has one
advantage, it worst case execution time is 20% less. The worst case speed is critical when
there is a fixed time for compressing a frame of image.

If we were to use off-chip memory further pipelining would be useful. For example, if the
memory bus is half the speed of the processor, we could halve the processor and double its
clock rate. In other words, the pipelining would be used to reduce the number of gates. For
the lowest average precision, the elements would still be fetched bit-serially; one significant
bit would be fully evaluated before the next one.

6.11 Conclusions

We have quantified significance of the presented arithmetic insight for classification. Most
classifications can be done with low-precision. For example in image coding with VPC mod-
ule, we have observed the average necessary-precision to be less than 3.6 bits. (VPC comple-
mented VPR’s elimination of superfluous MSBs.) Through simulations on auto-regressive
sources, we also postulated that the average precision is largely independent of variance. Also
for large vector dimensions and low correlation, the average precision is also independent of
element pdf.

When the total execution time is important, VPC is preferable to the conventional and
VPR implementations. We presented a simple modification which converts the VPR im-
plementation into a VPC design. The decrease in execution time more than offsets the
increased complexity, halving the AT? cost. The resulting pipelined design could vector

quantize MPEGII video.

In digital signal processing, the trend has been toward higher precision.

There have
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been several widely used 24-bit digital signal processors. Since VQ gain increases only
logarithmically with the number of codevectors, increasing precision also becomes a viable
avenue for VQ in future. VPC will become even more viable, when 10-bit pixels become

COININOIl.

Evaluating at average precision is more valuable when the operand precision increases.
VPC has a computational complexity of O(1) with respect to precision. Using a corollary
to VPC, the simulations can predict the performance for a higher precision. Meanwhile,
the performance of V@ improves logarithmically when increasing the precision beyond 10
bits, while the conventional inner product implementation’s complexity grows in square of
the number of bits O(r?). This had been the intuitive reason for the limited interest in
increasing the evaluation precision.
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CHAPTER 7

Summary and Future Research

This dissertation explores arithmetic and number representation as a means of reducing cost
of vector quantization. The investigation has two parts. Variable-precision representation
(VPR) reduces the number of bits stored by eliminating leftmost bits which are sign extension
in all bits of a codevector. On the least significant side, Variable-precision classification
(VPC) reduces the number of iterations for classification by eliminating the rightmost bits
which are superfluous. This chapter summarizes the key contributions of the dissertation

and suggests potential directions for future research.

Summary

e We developed a noiseless compression technique which has negative decoding cost:
variable-precision representation. We simulated the performance of VPR for real code-
books. The codevectors were trained in image compression with pruned binary-tree
structured VQ (PBTSVQ). For comparison, we also measured the codevector compres-
sion using entropy coding (e.g., Huffman coding). VPR is shown to effectively reduce
the codebook storage. VPR performs 75% as well in comparison to entropy coding.
Although VPR is implemented for binary trees, the approach can be generalized to
M-ary trees with comparable if not better performance.

e We implemented the decoder-processor module. It is a novel module, which unlike
conventional evaluation incrementally increases the precision of inner product. For
most compression, the precision of elements varies one bit at a time. For a high
throughput, it evaluates in radix-4 (i.e., two bits at a time). Also for comparison, we
implemented a conventional inner product module composed of four multipliers and
adders. When VPR processor can be used in variable-time applications the decoding
has negative cost. Specially when pipelined, the decoding overhead of VPR is more
than offset by the average decrease in the evaluation time. The AT measure showed

22% reduction in complexity, while AT% measure showed 29% reduction in complexity.

o We developed the variable-precision classification algorithm. In conjunction with VPR,
it reduces the number of bits evaluated. We showed that the average necessary-
precision is asymptotically constant. In other words, as the operand precision increases

the computational complexity of classification becomes independent of it.
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o We measured the performance of VPC for image compression, where VQQ was based on
the inner product discriminant. The average precision for classification was measured
in two ways. First, using auto-regressive vectors we showed that VPC was relatively
insensitive to change in vector variance. Then, we compressed two images: Lena
and Baboon, measuring the average necessary-precision. With Baboon, the average
precision necessary for classification was less than 3.6 bits. With Lena, the average

precision was less than 2.9 bits.

e We implemented VPC module. When the total execution time is important, VPC was
shown to halve the computation based on either AT or AT? complexity measure. VPC
is attractive when the total execution time is important such as in off-line processing or
when there already is a queue buffer before and the average execution time is important.
We also showed a simple generalization of VPC to M-ary VPC. Whenever we would
not need to replace the maximum, VPC would avoid full-precision evaluation.

Future Research

In this dissertation, we have significant improvements in hardware for compressing images.
VPC can potentially result in even greater gains when compressing speech.

o We would like to evaluate the performance of VPC in compression of speech. Speech
samples are often quantized at 12-bit, and precision of 16-bit is widely used (e.g.,
compact disc recording). The high operand precision would make VPC performance
more attractive than it was with 8-bit pixels used in image compression. It would be
worthwhile to develop the corresponding software and measure the performance for the
above mentioned applications.

e Derive a theoretical estimate for performance of VPC, assuming two-sided exponential
pdf for correlated codevector and source vector elements. It can act as an upper bound
on VPC’s performance. It would also confirm our findings on average precision of

auto-regressive sequences, that the discriminant pdf approaches the Normal pdf.

e Implement VPC in gate arrays. For estimating cost-performance we already have
developed a detailed design of VPC on paper. A gate array design could show the
viability of VPC.

e We would like to investigate effectiveness of VPC for reducing power consumption/
dissipation. VPC’s reduction in average number of iterations reduces the total amount
of energy drain. This is valuable when using VQ in a battery powered equipment. For
example, VQ maybe used on-board satellites or in cellular speech and video commu-
nications.
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Also as densely packed circuitry become technology feasible, VPC may address the
power dissipation. For Large Constraint-Length Viterbi decoding [BDB192], there
is massively parallel implementation of classifiers. Also for high quality compression
systems, there are proposals for massively parallel VQ architectures [DCGS8S].
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APPENDIX A

VQ Application

A.1 Required Throughput

For a black and white video source, we can calculate the required throughput. Let’s consider
the video which is sampled at rate of f; frames/sec, where each frame is w pixels wide and
h pixels high. The resulting source vector arrival frequency is

. ff'wh
o = K

where K is the number of elements in the vector.

Colored video is typically treated as an extension of monochrome video. Colored image
is separated into three images: the primary intensity image, and two subsampled chromatic-
ity images which have a quarter of the resolution of the intensity image. As a result the
computation required for a colored video is about 1.5 times more than for a black and white
video.

Let the processor clock frequency be f.. For a radix-4 VPR, each K-dimensional distor-
tion computation requires n/2 clock cycles. The frequency of distance evaluation becomes

fa = %Xfc

This throughput places an upper bound on the number of codevectors N which can be
individually inspected:

N

=7

For images, typical values are an arrival rate f; of 10 frames/sec and block sizes of about
256 x 240 (in the U.S) and 360 x 288 elsewhere (in Europe and Japan). For a clock frequency
of f. = 20 MHz (f. is usually limited by the Codebook access time), above inequality
yields an upper bound on the codebook size N as N < 32. Since the distortion incurred
is a monotonically decreasing function of the codebook size, an N=32 V(Q system would
undergo undesirable distortion and performance degradation. Thus, full search schemes
(which require large codebooks) are constrained by the limited processing power of the
chip compared to the high sample rates. In actual system design, most often a fast search
technique is employed.
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Specification

At a high throughput, we intend VQ at proposed MPEGII rate (12.3x10° pixel/sec) video us-
ing PBTSVQ. MPEGII is the next standard for image compression, designed for compression
of high quality video used in broadcasting studio. In our simulations, we use mean-residual
VQ with 16-pixel vector (K = 16) as a simple form of preprocessed VQ. In actual system de-
sign, a more sophisticated preprocessor would be employed. In some aspect our specification
is similar to a system analyzed by Modestino et. al. [MK92]. That system would encode at a
rate (R = 1 bit/pixel). Instead of using a separately transmitted mean to predict the block,
they predict the block by the adjacent already transmitted blocks. The image pixels are
typically digitized at 8-bit precision. Subtracting the mean of the vector from its elements,
adds one bit to represent the sign of the pixel. Subtracting two centroid codevector to find
the hyperplane codevector results in 10 bits per stored codevector element. The specification
becomes:

Frame Height b = 576 pixels
Frame Width w = 720 pixels

Frame Frequencyf; = 30 frame/sec
K = 16

Video Frequencyf, = 12.4 x 10° pixel/sec
n = 10 bits

IN

1.0 bit/pixel

Compression Rate R

For a replacement codevector, a pruned tree which has up to 12 levels is searched (R <
0.75 bit/pixel). Required throughput is at most
fa = o x (KR —4)
K
= 9.3 x 10° inner product/sec

where we have allocated four bits for quantizing the vector mean [Bak84], leaving (K R — 4)
bits for encoding the codevector index. (Equivalently, the required evaluation time 7y is 107
ns.)
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APPENDIX B

Implementations

B.1 VQ Search Controller

Figure B.1 shows a controller designed to search VQ trees stored using VPR. The base ad-
dress would have already been fetched. The codevectors would be stored in adjacent location.
When VPR-controller raises the done flag, the search-controller begins fetching the next hy-
perplane vector. Based on the given sign, the search-controller fetches one of two codevectors.
If the left branch was chosen, the base address would be used to fetch the next codevector.
If the right branch was chosen, the base address is offset by the relative address of the
right branch before fetching the codevector (relative address = [(e(y') + of fset(y'))/2]).
As the search proceeds, all the signs of the hyperplane tests are shifted one bit at a time into
a register. At the end of the search, the shift register has index of the chosen codevector.

A conventional VQ controller was implemented at UCLA. It was part of a video compres-
sion board which was designed by Holmberg [Hol90]. It included a controller for searching
PBTSVQ with bit-serial inner product data path. Designed for FPGA but never built,
the micro-controller was intended for fixed precision elements. It was similar to the VPR
controller, except the relative address of the branch was a constant five.

The conventional search-controller can be easily modified for variable-precision codevec-
tors. It needs only two changes. First, its modulo-5 counter which initiates a new computa-
tion every five cycles is removed. Instead, we initiate with the done signal which is output
from the inner product nano-controller. Second, in calculating the address of codevectors,
the relative address of the second branch is not fixed at five. It is a function of exponent
e(y)-

Even though variable size of codevectors requires an address space which has two bits
finer resolution, the storage overhead is still low. First, the exponent of each codevector can
be stored in three bits. Also in binary classification for every codevector pair, we need to
store the offset and address of the first codevector. Since with radix-4 storage of elements,
there is two more bits resolution than conventional approach. All accounted, for every two
codevector nine bits more are stored (i.e., 4.5 bits per codevector). Compared with M-ary
classification, our overhead increases only little (i.e., 4.0 bits vs. 4.5 bits).
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B.2 VPR Implementation

Data Path

As shown in Figure B.2, the VPR core is 16 (= K) radix-4 partial product generators
and a summation tree. The radix-4 partial product generators, which use string (Booth)
recoding of the multiplier, act like digit-serial multipliers. Their output along with the bias
term is gathered by a tree of adders and accumulated in a carry-save redundant form. The
multipliers and addition tree is iteratively fed the digits of the VPR codevector. It presents
its final accumulation to the sign detector. For fast execution time, the sign detector is
based on a 4-bit carry look ahead adder. For lower complexity, it is stripped to the bare
circuitry needed to calculate the sign bit. Specifically, five 4-bit carry look ahead modules
are concatenated.

Figure B.3 shows the string recoded partial product generator. In a radix-4 implemen-
tation, string recoding of the multiplier is attractive. String recoding simplifies the partial
product generator. Instead of requiring two adders, a string recoded generator uses an adder
and a 4-1 multiplexor.

String recoding can be viewed as breaking any digit which is ‘3’ to -1’ with a ‘1’ carried
to the next significant position. This maps the digit set {0,1,2,3} into {-2,-1,0,1,2}. The
digit recoding needs three adjacent bits. In every cycle, two bits are fetched. A latch which
stores the overlapping bit from the previous cycle provides the third bit. This latch is reset
at the beginning of the recoding.

The summation network also adds the bias term b. Bias term b is stored in variable
precision to minimize storage, and is added digit-serially to minimize access. From Chapter 2
which described the inner product computation,

1 K

b= 3 () (B.1)

With (n — e(y)) bits in y,, the number of bits in b = b/2% is,
bits(b/) = [log, K| +2n — 3 — 2e(y)
— 21— 2e(y), n=10,K = 16

When the precision of y, decreases by one bit, the precision of b decreases by two bits. Note
that, LSB was eliminated when the summation was divided by two. In here, we now also
truncate the second LSB,

bits(b) = 20 — 2¢(y)

Now &' can be multiplexed in equal sized nibbles (i.e., 4 bits). This is convenient. With
every digit of codevector y', we store one nibble of bias b'. The nibble memory addressing
can easily be made identical to that of the codevector y'.
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STATE // D = maximum depth of tree

register addresspezs < D +2 >, [/ address of a codevector pair
Cleft < 3 >, // exponent of left branch
Eright < 3 >, // exponent of right branch
of fsetept; // offset of left branch
label < D >; / current node label
labely,s < D >, [/ label > labelie,s are leaves
counter ajdfjlcress <D+2>, // current codebook address
oJ | set;
shift register index < D >; // built in multiply by 2
INPUT

boolean reset, begin, sign, done;

ouTpPUT
boolean end;
integer index < D >;
BEGIN PRUNED BINARY TSVQ
if reset
{ reset address || reset index || reset of fset || reset e}
if first_iteration
{ load addressnc:: || load of fsetper: || load ejess || load €595 || load label }
if done.sign’
{ address = address,es: || of fset = of fsetpest || € = €lege }
if done.sign
{ address = address,es: + |(0f fsetnest + €1e5e) /2] ||
of fset = (addresspest)o ® of fsetyert B €lefrrs || € = €right}
if done
{ tndex = 2index + sign }
it label > label; s
{end=11}
END PBTSVQ

Figure B.1: Controller for searching binary tree structured VQ codebooks.
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Controller

VPR has 4-bit of control information for each stored codevector. For 10-bit elements (n =
10) in VPR format, the exponent e would nominally require four bits. Inspections of the
codebooks presented in the previous chapter show that less than 1% of the time e € {8,9,10}.
Limiting e to three bits, results in negligible decrease in VPR compression, while it minimizes
storage. We use the fourth control bit to store an offset marker. It flags when the codevector
begins in the middle of a radix-4 memory word.

As shown in Figure B.4, VPR controller has only three bits of output. It outputs the
two masks needed in the radix-4 multiplication, and it flags when the execution is done. It
has two parts: a variable-step down counter, and a recoder which initializes the counter. For
each codevector y it reads e(y) and of fset(y). For fast execution, we pipeline the recoding.
In the first cycle, the only information that we need is whether codevector’s first 2-bit word
is aligned:

mo = of fset; my = 1;done =0

where mgq is the mask on the LSB of the word. At the beginning of the second cycle, the
initial state of the counter is loaded with w and lonejysg. w is set to the number of non-
masked words in the element (w = [(10 — e + of fset)/2]); lonepsp is set to one if the last
word to be read will be half used (loneysp = of fset & enmsp)). The variable-step counter
is a combination of w and loneygg. It counts down on the number of bits of the elements
to be evaluated. Finally, when the computation is done, the VPR-controller can flag the
search-controller. In appendix A, we presented the VQ controller. Basically, in addition to
the signals the VQ controller manages, the VPC controller deals with the terminate signals.
The controller uses it to schedule a classification arbitrary cycles apart from the previous
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Figure B.4: VPR controller initializing a variable-step down counter for each codevector.

one.

Figure B.5 shows the input and output to VPR module. Its control section was shown in
Figure B.4. The data path module is shown in detail in Figure B.6. Namely, 16 string recoded
partial product generators whose output is summed and it is followed by a sign detector.
The design requires 9100 gates. The critical path is calculated to be 20.7 nsec, where we
have included the effect of fan-out and wiring delay had the circuitry been fabricated in 1.0-u
technology with 40% array utilization. Figure B.7 shows the implementation of masking and
the string recoding.

Figure B.8 shows a sample timing diagram for VPR architecture. It contains the input
and output to the implemented inner product module. The hair-line is placed between two
different sections of the timing diagram. Before the hair-line the fetch registers are reset and
the source vector is loaded. The hair-line marks the beginning of the three classifications.
Raising of the done signal marks the end of each classification.

B.3 Fixed-Precision Implementation

For comparison, a conventional architecture based on multipliers and adders is designed. It
evaluates the inner product as follows:

Xy+b = D wpyr+0b
2

3 4it4
- xS et
1=0 k=4i+1
hardware

where the inner summation is implemented with four multipliers and adders, and the outer
summation is executed in four iteration.

As shown in Figure B.10, the conventional alternative has four string recoded multipliers
whose carry-save output is summed in an adder tree along with the bias term and then
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Figure B.5: VPR controller and data path.
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Figure B.6: VPR data path.
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Figure B.7: String recoded partial product generator.
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is accumulated again in carry-save form. For K = 16, the evaluation completes in four
cycles. To reduce memory bandwidth, the bias term b, which is 20 bits, is multiplexed. It is
transmitted five bits at a time in four cycles.

For buffering the source vector, it has a circular buffer which stores four elements. As it
recirculates them, it outputs the elements sequentially. To start the next vector quantization,

the buffer is filled with the content of the FIFO. FIFO itself is tapped from the bus while

the previous inner product is being done.

Figure B.11 is the top level schematic in the conventional architecture. As can be seen,
the architecture is four string recoded multiplier which are summed and accumulated in four
cycles. The design requires 9993 gates. The critical path is calculated to be 20.7 nsec, where
we have included the effect of fan-out and wiring delay had the circuitry been fabricated in
1.0-p technology with 40% array utilization. Figure B.12 shows the implementation of the
multiplier. As can be seen it is comprised of four string recoded partial product generators.

Figure B.9 shows a sample timing diagram for conventional architecture. It contains
the input and output to the implemented inner product module. The simulation results
are divided by the hair-line. Before the hair-line, the fetch registers are reset and the source
vector is loaded. The hair-line marks the beginning of the three classifications. We simulated
the classification of the same source vectors shown for VPR implementation. We used
equivalent clock cycles for both architecture. As can be seen for these codevectors, the total
simulation time in conventional design is longer than the VPR design.

B.4 Pipelining Implementations

Pipelining of either of the designs is simple. To pipeline we need to insert the pipelining
registers. Since for accumulation both designs used CSAs, there is no carry ripple to consider.
With [ stage pipeline, the signal along the critical path will then have [ clock cycles to
propagate. The other cost of pipelining is increasing the number of clock cycles for evaluation
by I.

Pipelining VPR and conventional implementations are similar. First, same number of
latches would be used in the pipelining. Second, the length of pipelines would be the same.
At worst case, the conventional approach, which has two more levels in its summation tree,

would require one more level in the pipeline.

In a pipelined architecture, two factors determine the shortest clock cycle 7,
Ts = maX(Tmema Tprocessor)

where T},.,, 1s the memory access time, Ty ocessor 15 the processor cycle time.

Often, when the codebook memory is off-chip the memory access time 7),.,, determines
the clock cycle. In many quickly prototyped full custom circuitry, the designer opts for
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simplicity of a non-fully pipelined architect T}, ces50-. Finally, pipelining due to its overhead
result in a minimum stage time 7,44 throughpur Which gives the maximum throughput.

Example 1: DRAM! memory is used.

Ts = Tmem = TDRAM

~ 60nsec

For a given budget to be spent on memory, DRAM allows the storage of the biggest code-
books. On DRAM, when an access is local to a page of memory (/& 256 locations), there is
fast sequential access mode. Using the fast page mode, the previous DRAM can be accessed
in 1/3 the time of a random access.

Tmem = TDRAM page

~ J30nsec

Note that, if the memory is several times slower than the processor, we can multiplex the
processor’s data path and implement less circuitry.

Example 2: Processor is implemented in full custom [MJBD92]. For 2 p LSI Logic,

Ts = Tprocessor

~ 2dnsec

The available building blocks and tools limit the clock speed.

Example 3: VPR processor is down loaded into the field programmable XILINX Field
Programmable Gate Array (FPGA)[Com91]. Even with a large FPGA chip?, to fit a VQ
processor requires the architecture to be modified to use the circuitry available for addition.
Using the builtin carry acceleration circuitry, it reduces the number of cells, but it requires
carry propagation at every level of the summation network. Moreover in FPGA technology,
the full adder cell circuitry are twice as slow as the gate array technology. Combined with

carry propagation, these result in a slow processor,

Ts = Tprocessor: carry propagate adder

~ 35nsec; for 12-bits

Example 4: We pipeline the inner product module which we have implemented. It is
implemented in conventional gate array technology, where both the technology and design
tools are well developed. The codebook would also be stored on-chip to reduce the access

11Mx4 AAA4M204 DRAM, NMB Technologies
ZXILINX XC4010 with 200 configurable logic blocks
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latency. The pipeline which gives the maximum throughput would have five stages (I = 5).
We estimate the shortest clock cycle T as,

Ts = Tprocessor = TBFA

~ 10nsec

In words, the critical path is 3 full adders. This is greater than the minimum 2 full adders
used with the accumulation feedback with carry-save adders. Calculations have shown that
a pipeline with 3 full adders per stage performs comparable to a pipeline with 2 full adders
per stage, due to the increased latency and buffering overhead.
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Figure B.8: VPR architecture timing diagram.

Figure B.9: Timing diagram for conventional architecture.
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Figure B.10: Conventional inner product module implemented for comparison.
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Figure B.11: Multiply-accumulate inner product architecture.
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Figure B.12: String recoded multiplier.
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