
A Design of Online Scheme for Evaluation of Multinomials

Pouya Dormiania, David Omotoa, Pavan Adharapurapub, and Miloš D. Ercegovacb

aElectrical Engineering Department, UCLA, Los Angeles, CA 90095, USA
bComputer Science Department, UCLA, Los Angeles, CA 90095, USA

ABSTRACT
We present an online arithmetic scheme for hardware evaluation of multinomials arising in Bayesian networks.
The design approach consists of representing the multinomial in a factored form as an arithmetic circuit which
is then partitioned into subgraphs and mapped to FPGA hardware as a network of online modules connected
serially and operating in overlapped manner. This minimizes the interconnect demand without a drastic increase
in computation latency. We developed a partitioning/mapping algorithm, designed basic radix-2 online operators
and modules, and determined their cost/performance characteristics. We also evaluated the cost/performance
characteristics of implementing a Bayesian network on an FPGA chip.

Keywords: Arithmetic circuit, Bayesian network, multinomials, online arithmetic, FPGA implementation.

1. INTRODUCTION
The problem of evaluating multinomials (sums of multivariable products) arises in computing inferences in a
Bayesian network (BN). A BN is a compact, graphical model of a probability distribution.9 It consists of a
directed acyclic graph with edges indicating direct causal influences among the nodes (variables) and a set of
probability distribution tables quantifying these influences. BNs are widely used in problems where we need to
answer questions based on uncertain information. Fig. 1 below shows the well-known ASIA11 Bayesian network.

Visit to asia?

Has
Tuberculosis

Tuberculosis
or Cancer

Positive
X-ray?

Dyspnoea?

Has Lung
Cancer

Has
Bronchitis

Smoker?

Figure 1. Bayesian network describing the ASIA example.

ASIA depicts the casual structure of a patient having tuberculosis, lung cancer, or bronchitis based on several
factors, one being whether or not the patient has recently been to Asia. Probabilistic inference, a common
operation performed on BNs, involves finding the probability of an event based on the probability distribution
defined by the BN. In the ASIA example, we may want to find the probability of the patient having lung cancer
given that he has Dyspnoea.

Darwiche5 has proposed a new approach for computing inference in BNs wherein he represents the BN using
a multinomial and shows that inference can be answered by evaluating the multinomial. To reduce the number of
operations, the multinomial is transformed into a factored form which corresponds to a network of multiplication

Further author information: (Send correspondence to M. Ercegovac, milos@cs.ucla.edu)
e-mail: ; P.D.: pouya@seas.ucla.edu; D.O.: domoto@ucla.edu; P.A.: pavan@cs.ucla.edu

Advanced Signal Processing Algorithms, Architectures, and Implementations XV, edited by Franklin T. Luk,
Proc. of SPIE Vol. 5910 (SPIE, Bellingham, WA, 2005) ∙ 0277­786X/05/$15 ∙ doi: 10.1117/12.617342

Proc. of SPIE Vol. 5910 59100S­1

and addition nodes called the arithmetic circuit5 (AC) of the Bayesian network. While the multinomial is
exponential in size, the corresponding AC is of manageable size. This is achieved by the use of sophisticated
algorithms which exploit the global and local structure in the probability distribution.

In this paper, we discuss the design of a hardware arithmetic circuit for evaluating a BN multinomial whose
AC representation is given. We consider using online arithmetic7 to reduce the interconnection requirements of
the arithmetic circuit consisting of many operators. A straightforward approach is to map the given AC to a
network of online multipliers and adders. Another approach we explored is to use composite online operators,
such linear system solvers4 which, when applicable, have smaller online delay than the delay of online networks.
In the next section we discuss obtaining AC forms suitable for implementation. We also discuss organization
issues when AC computational requirements exceed available resources. In Section 3 we present the designs and
delay/cost characteristics of the online operators: online adder, online multiplier, and linear systems operator
(LSO). Section 4 presents estimates of the delay and cost of implementing the ASIA example on a Xilinx FPGA.

2. COMPUTING THE AC
The arithmetic circuit derived from the Bayesian network, as discussed in the last section, is a DAG (directed
acyclic graph) in which nodes represent operators or values and edges show dependencies. The inputs of the AC
are probabilities, θ, and indicators, λ. The θ values are taken from the probability distribution tables defined
for each variable in the Bayesian network, and the λ values specify whether there is evidence that is or is not
consistent with a variable.

For our purposes, the AC has a logical, as well as an arithmetic structure. The AC originally derived from
the Bayesian network is captured by an NNF (Negation Normal Form) file, in which nodes are represented by a
character literal (e.g., “A” for And), followed by additional parameters that further specify the node. The NNF
file currently contains three types of nodes: And, Or and Leaf nodes. And nodes are multiplicative nodes;
when computing the probability of an event A And B, the probabilities are multiplied. The Or nodes are similar
to And nodes; when computing the probability of an event A Or B, the probabilities are added. The Leaf
nodes contain a probability and/or an indicator. The And and Or nodes are followed by the number of inputs
the operator takes, and a list of indexes that specify the input. Every node has an implicit index according to
its position in the file. The very first node in the file has an implicit index of zero. All children of a node will
appear in the NNF file before its parent(s). Fig. 2 illustrates this description.

0 L 0
1 L 1
2 A 2 0 1
3 L 2
4 O 2 2 3

L0L1

*2

+4

L3

(a) (b)

Figure 2. (a) The NNF description (b) The graph representing this description.

Once the structure of the DAG is determined, we must differentiate between arithmetic and logical operators.
Some And nodes will have as inputs, indicators as well as probabilities. Although multiplication and selection
by an indicator are logically equivalent, for a hardware implementation we treat selection operations as logical
operators and only perform arithmetic when necessary. To determine the nature of an And operator, we
incorporate the LMAP file, which maps values to the leaves of the DAG. Leaves are specified in the NNF as an
“L” followed by an index into the LMAP file. The LMAP file contains three types of leaves which are of interest
to us: Indicators (I), Probabilities (P), and Hybrids (H) (which act as an Indicator And Probability, as shown
in Fig. 3c). By recursively examining the inputs to an operator, we can determine whether the operator is of a
logic or arithmetic nature. Fig. 3a and Fig. 3b illustrate this concept.

Proc. of SPIE Vol. 5910 59100S­2

(a) (b)

H

*

*

*

II H H

A

*

A

II H

(c)

A

IP

Figure 3. (a) Before LMAP substitution, all operations are considered arithmetic (b) Once the LMAP is substituted,
operations that are not strictly arithmetic are changed to logical operations (the nodes labeled “A” are performing logical
And operations and are referred to as L-and nodes) (c) A hybrid node.

2.1. Partitioning and Mapping
Once an expression has been identified through the NNF and the nature of operations is distinguished with the
LMAP file, we can compute inference for the given BN. The process in which the AC can be computed depends
on the size of the AC and the hardware resource constraints available. If the AC is small enough to satisfy the
hardware constraints, a direct mapping is performed to the operators described in section 3. If the AC demands
greater resources than available, it must be computed in smaller iterations. The iterations to make over the AC
must take into account dependencies, and sharing (to be discussed in section 2.1.1). Essentially, this involves a
two stage process which firstly partitions the AC (a DAG) into subgraphs which are rooted trees. In order to
compute the AC, all subgraphs must be computed in the order intrinsic to their dependencies present in the AC.
Certain subgraphs will favor an online approach, and these subgraphs must be mapped to the available resources.
If a subgraph demands a greater set of resources than available, it must be further pruned to create smaller trees
which can be mapped to the resources. The prunings in the subgraph will be computed in the order specified
by their dependencies. Once all the prunings of a subgraph have been mapped, the subgraph will be computed.
This will enable further computation of other dependent subgraphs.

2.1.1. Partitioning

For a given node n in the AC, the predecessors (P) of n, act as inputs to n. Also, for a given node n, S is the
set of successor nodes which depend on n, then n is a shared node if |S| > 1. This is shown in Fig. 4.

n

nd0
nd1

nd2

P

n

nd0 nd1
nd2

S

Figure 4. for a given node n, P is the set of predecessors, and S is the set of successors.

Shared nodes contain a value that can be shared anywhere in the network. This means that when computing
shared nodes, the output must be saved, so if need be, the value can be used by other iterations. Algorithm 2.1
was used to eliminate shared nodes in the DAG, and create a set of subgraphs: rooted trees which contain no
shared nodes. The output of a subgraph will be stored and used as inputs to other subgraphs.

Proc. of SPIE Vol. 5910 59100S­3

Algorithm 2.1: PartitionToSubgraphs(n, V, sg)

if n is Operator and n /∈ V

then






P ← Predecessor(n)
V ← n
if n is SharedNode

then






ns ← new Subgraph
ns ← n
for each p ∈ P
do PartitionToSubgraphs(p, V, ns)

else






sg ← n
for each p ∈ P
do PartitionToSubgraphs(p, V, sg)

PartitionToSubgraphs(n, V, sg) is called with the root of the DAG as n, an empty set containing the
visited nodes V , and a newly created root subgraph sg. Predecessor(n) returns a set containing all of node
n’s predecessors. This algorithm will create a new subgraph at every shared node which is an operator, and place
that operator in the newly created subgraph. Then the algorithm recurses on the shared node’s predecessors
with the newly created subgraph.

Using this algorithm, the PIGS12 and HAILFINDER12 arithmetic circuits were partitioned. The charts in
Fig. 5 show the distribution of the subgraphs which resulted from the partitioning. The horizontal axis shows
the size of the subgraph as the number of operators it contains, and the vertical axis represents the frequency
of the given subgraph multiplied by its size. This representation shows the total number of binary operations
contributed by a subgraph of a given size.

Pigs

0

50000

100000

150000

200000

250000

300000

350000

1 3 5 7 9 11 13 15 17 21 23 28 36 42 47 67 83

11
99

76

Subgraph size

To
ta

l b
in

ar
y

op
er

at
io

ns

A
+
*

Hailfinder

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 3 5 7 9 12 14 16 18 20 22 24 28 30 32 34 36 38 46 95
43

37

Subgraph size

To
ta

l b
in

ar
y

op
er

at
io

ns

A
+
*

Figure 5. The total number of operators contributed by a given graph size. The distribution of logical nodes (L-and)
and arithmetic nodes is also shown. he size of the PIGS and HAILFINDER networks are approximately 860,000 nodes
and 9800 nodes (binary), respectively.

Mapping the AC to an online network requires careful partitioning to expose the characteristics which render
online algorithms favorable. The delay through an online chain is characterized by the total online delay through
the chain, ∆ =

∑
i (δi + 1), plus the precision of the input, m, which comes about from the serial nature of the

algorithm. Long online chains are favorable to amortize the delay contributed by the precision, and conceal the
serial delay.

Intuitively, the algorithm is designed to create the largest possible subgraph. This partitioning results in
a particular profile in the size of subgraphs created. At one side of the spectrum, are large numbers of small
subgraphs, which have no depth, and hence no advantage for online algorithms. At the other side of the spectrum

Proc. of SPIE Vol. 5910 59100S­4

there are very large subgraphs which are deep and hence amortize the online delay. This profile indicates that both
parallel and serial style arithmetic might be suitable for computing the AC. Large subgraphs would be partitioned
by pruning the subgraph tree, and mapping it to the resources available. The different iterations required to
compute large subgraphs will essentially represent a set of super-operators through which the arithmetic circuit
is solved.

2.1.2. Mapping

In the mapping stage, we map a given partition to a set of resources available. At the moment, only the
binary operators presented in Section 3 are available. Thus, every operator with a greater number of inputs is
restructured as a tree of binary operators. The subgraph is still a rooted tree which makes mapping a somewhat
trivial task.

Given a hardware resource constraint describing the availability of operators, we can prune parts of the tree
which satisfy the resource constraint. These prunings will create the set of reconfigurations, S, required to fully
compute the AC. Each reconfiguration is a super-operator for solving part of the much larger subgraph. If every
super-operator, si ∈ S, has a given computation time, Ci, and each reconfiguration requires time ti, then the
total time to compute the subgraph is equal to

∑
∀si∈S Ci + ti.

One must take into careful consideration that the subgraph still contains L-and nodes which are logical
operations. These operations essentially either feed the value of their child tree to the next dependent node
or feed a zero value. These logical operations must be fully exploited to avoid performing computations that
become irrelevant due to a L-and node. This concept will be discussed further in the next section.

2.2. ASIA Example
The ASIA example introduced in Section 1 is used here as a working example to demonstrate how the set of
super-operators for the AC are determined. Executing Algorithm 2.1 on the AC derived from compiling the
Bayesian network shown in Fig. 1 will result in the subgraphs shown in Fig. 6. As it can be seen, the shared
nodes in the AC are the roots of the subgraphs created. From this point on we will only consider the largest
subgraph shown, which is the only subgraph created in this example that will benefit from being computed in
an online fashion. The subgraphs are subsequently checked for operators with more than two inputs, any such
operator is expanded to a tree of binary operators. We now search for “logical and” (L-and) nodes in the graph
by incorporating the LMAP description of the ASIA example. The nodes in the graph which are considered as
L-and operators are marked as “A”, shown for the subgraph in Fig. 6.

In our example, the subgraph fits entirely on chip and does not require pruning of the subgraph or reconfig-
uration. In other words the ASIA example only requires one super-operator, which solves the entire subgraph.
Of course for larger graphs this will not be the case and reconfiguration or efficient mapping to a constrained
physical routing must be accomplished. At this point in time, we have established that all L-and nodes should
be precomputed for a given subgraph before creating a set of super-operators. The resulting tree created through
the precomputation of L-and nodes avoids any unnecessary computation. We have yet to examine the details
of this approach to discover any overhead which this precomputation step may introduce.

3. ONLINE OPERATORS
This section describes the design and implementation of fixed-precision, radix-2 online arithmetic operators and
the corresponding modules used in the arithmetic circuit derived from a Bayesian network. For each module,
delay and cost as a function of precision are determined. Online addition and online multiplication are presented
in Section 3.1 and Section 3.2, respectively. The LSO operators and modules are described in Section 3.3 and
Section 3.4, respectively. For all modules, the radix is r = 2, m is the precision in bits, δ is the online delay, and
t is the truncation precision used for residual estimation. The radix-2 signed-digits for all modules are encoded
using the borrow-save notation, where x ∈ {−1, 0, 1} and x = x+ − x−. For the OLM and LSO modules, the
on-the-fly conversion/appending (CA) function is used to convert from the signed-digit representation to the
two’s-complement representation in a digit-serial manner.7 The implementations presented are related to those
of.8, 10

Proc. of SPIE Vol. 5910 59100S­5

+34

*24*33

+103

*75

A +6

+73 L74 A2 A5

L0 L1 L3 L4A53 *72
A

+65

*59 *64

L10 +63

A60 A62

L11 L52 L55 L61

L7
+58

A54 A57

L8 L52 L55 L56

L71
+70

*67 *69

* *

L68 L46L35 L66

A

L52L51*

+50+13

*9 *12 *38 *49

L7 L8 L10 L11 6 7 101
1 7

A102

A

L51 L55

8 9 1211

113 5 10

*97*96

+98

*99
10

*93*89

+94

*95

+100

6

A L101

*

*

L61L10L56L7

*82*81
+83

L78L3L76L0

A79A77

+80

SG0

34 5 2

SG1
*48

L46 L47

SG10
+88

A87 A85

L17 L86 L14 L84

SG11
+92

A91 A90

L15 L17 L14 L18

SG12

+20

A19 A16

L17 L18 L14 L15

SG2
A23

L21 L22

SG3
+29

A28 A26

L17 L27 L14 L25

SG4
A23

L30 L31

SG5

*37

L35 L36

SG6
+45

*41*44

2

SG7

4 9 8

A40

L21 L39

SG8
A43

L30 L42

SG9

Figure 6. Subgraphs of ASIA. In the subgraphs shown, arithmetic operators are shown by their corresponding operator
and L-and operators are denoted as “A”.

3.1. Online Addition
The design and implementation of an online adder (OLA) with δ = 2 will now be discussed. Let z = x + y,
where xk and yk are the digits of the inputs. Fig. 3.1a shows the implementation of the OLA.

The online adder in Fig. 3.1a produces a result in the range [0,1) when |x|+ |y| < 1, but with z = z0.z1z2
In other words, the first output digit produced has a weight of 20. The first digit of x and y consumed by all
modules (LSOs, online multipliers, and online adders) are required to have a weight of 2−1. Thus, the online
adder must be normalized so its output can be fed into the next module. It can be shown that if z0 = 1, then
the next non-zero digit must be -1. Likewise, if z0 = −1, then the next non-zero digit must be 1. Using these
facts, the normalization can be done using a simple state machine, as shown in Fig. 3.1b.

The first digit, z0, produced by the online adder arrives at state S0. If this digit is 0, then no normalization
is required and edge a is taken to state S2. However, if the first digit is non-zero, then edge b is taken to state

FA

FA

xk+3
+

xk+3
- yk+3

+

yk+3
-

zk+1
+zk+1

-

zk+zk-

(a)

S0 S1 S2

a

b

c

d

e

OLA
Output

Normalized
Output

OLA Normalizer

(b)

Figure 7. (a) Online Adder, (b) State Machine for OLA Normalizer.

Proc. of SPIE Vol. 5910 59100S­6

S1. A value of 0 is always outputted when the state machine is in state S0. The state machine remains in S1
(edge c) until a non-zero digit arrives, which then causes the state machine to go to state S2 via edge d. While in
the S1 state, the value of the first digit is outputted. In state S2, normalization has completed and the received
digit from the online adder is passed through to the output of the normalizer. Edge e is taken once the online
adder has produced the m digits, and a new operation can begin.

From Fig. 3.1a, the critical path through the online adder consists of two inverters and two full-adders. To
avoid an extra cycle to perform the normalization, zj+1 is fed into the normalizer. The normalizer performs
an exclusive-or of z+

j+1 and z−j+1 to check for a non-zero digit. Thus, the critical path of the online adder and
normalizer is equal to Eq. 1. Tff includes the clock-to-q delay from the flip-flops being read as well as the setup
time for the flip-flops being written to. The implementation of the online adder with the normalizer in a Xilinx
Virtex-4 FPGA requires 22 LUTs and 13 flip-flops, which fits in only 3 CLBs, and can be clocked at over 500
MHz. Note that the implementation remains the same for any m.

TOLA = Tff + 2Tinv + 2TFA + Txor (1)

3.2. Online Multiplication
The design and implementation of an online multiplier (OLM) with δ = 3 and t = 2 will now be discussed.7
Eq. 2 and Eq. 3 show the recurrence equations of the online multiplier. The subscripts denote the digit index and
the square brackets indicate the iteration index. Since δ = 3, j = −3, . . . ,m−1. Let x[−3] = y[−3] = w[−3] = 0.
Since the first digit of the product, p1, is not produced until j = 0, the pj+1 term is not present in Eq. 3 for
j = −3,−2, and − 1. Let x[j] = CA(x[j − 1], xj+4) and y[j + 1] = CA(y[j], yj+4). The residual, w[j], is in the
redundant carry-save form, and is actually represented by two vectors in the two’s-complement representation:
ws[j] and wc[j]. The signed-digits of the product, pj+1, are chosen by the selection function (SEL) using v̂[j],
an estimate of v[j] computed with t = 2, as shown in Eq. 4.

v[j] = 2w[j] + (x[j]yj+4 + y[j + 1]xj+4)2−3 (2)
w[j + 1] = v[j] − pj+1 (3)

pj+1 = SEL(v̂[j]) =






1 if v̂[j] ≥ 0.5
0 if −0.5 ≤ v̂[j] < 0.5

−1 if v̂[j] < −0.5
(4)

Fig. 3.2a shows the possible values of v̂[j] and the corresponding values of pj+1 and ẑ[j] = v̂[j] − pj+1. Let
v̂[j] = v̂s[j]v̂0[j]v̂1[j]v̂2[j] and ẑ[j] = ẑs[j]ẑ0[j]ẑ1[j]. The subtraction of pj+1 from v̂[j] can be performed using
Boolean expressions rather than an explicit subtraction. The corresponding Boolean expressions for pj+1 and
ẑ[j] are shown in Fig. 3.2b.

v̂[j] pj+1 ẑ[j]
00.0 0 00.0
00.1 1 11.1
01.0 1 00.0
01.1 1 00.1
10.0 -1 11.0
10.1 -1 11.1
11.0 -1 00.0
11.1 0 11.1

(a)

p+
j+1 = v̂s[j] · (v̂0[j] + v̂1[j])

p−j+1 = v̂s[j] · (v̂0[j] + v̂1[j])

ẑs[j] = v̂s[j] · v̂0[j] + v̂s[j] · v̂1[j] + v̂0[j] · v̂1[j]
ẑ0[j] = zs[j]
ẑ1[j] = v̂1[j]

(b)

Figure 8. (a) Selection of pj+1 and calculation of ẑ[j] = v̂[j] − pj+1, (b) Boolean equations for pj+1 and ẑ[j].

The five most-significant bits (MSBs) of the datapath, excluding the CA modules, are shown in Fig. 9a. A
4-bit carry-ripple adder (CRA) is needed to compute the estimate v̂[j] with t = 2. The selection of pj+1 is done

Proc. of SPIE Vol. 5910 59100S­7

in the SEL block and the calculation of ẑ[j] = v̂[j] − pj+1 is done in the SUB block. Note that from Fig. 3.2b,
the computation of z[j] only depends on v̂[j]. Thus, the SEL and the SUB blocks can be performed in parallel.
Also note that the terms x[j]yj+4 and y[j + 1]xj+4 from the recurrence equation are multiplied by 2−3. This
multiplication is done simply by shifting right by 3 bits. Fig. 9b shows the bit-slice for the repeated bits (RBs).
For m bits of precision, there are (m − 3 − 1) instantiations of the RB slice. Fig. 9c shows the least-significant
bit (LSB) of the datapath. Recall that multiplying an input by -1 in the two’s-complement representation can
be done simply by negating each bit of the input and adding a logical 1 to the unit in the last position (ulp).
These ”‘carry-ins”’ are accounted for in the LSB slice.

FA

‘0'‘0' ‘0'‘0' ‘0'‘0'

HA

FA

HA

FA

‘0'‘0'

FA

SEL SUB

CRA

xs[j]xs[j]xs[j]xs[j]

z1[j]z0[j]zs[j]pj1

z0[j] z1[j] zc2[j]

pj0

‘0'‘0'

ys[j+1]

‘0'‘0'

ys[j+1]

‘0'‘0'

ys[j+1]

‘0'‘0'

ys[j+1]

FA

zc3[j]
zs3[j]

tlc3[j+1]

blc3[j+1]
FA

‘0'‘0'

HA

xs[j]

zs[j]

‘0'‘0'

ys[j+1]

zc2[j]zs2[j]

FA

zs2[j]

xj+4
yj+4

2

2

(a)

‘0'‘0'

FA

xk[j]

zsk+2[j]

‘0'‘0'

yk[j+1]

FA

tlck+3[j+1]tlck+2[j+1]

zck+2[j]

zck+3[j]
zsk+3[j]

blck+2[j+1] blck+3[j+1]

xj+4yj+4 2 2

(b)

‘0'‘0'

xm-3[j]

yj+4
1

yj+40

‘0'‘0'

ym-3[j+1]

tlcm-1[j+1]

zcm-1[j]

HA

blcm-1[j+1]
HA

zsm-1[j]

xj+40

xj+41

xj+4yj+4 2 2

(c)

Figure 9. Optimized Datapath for the Online Multiplier: (a) MSBs, (b) RBs, (c) LSB.

TOLM = Tff + T4-to-1 mux + T[4:2] adder + T4-bit CRA + TSEL and SUB (5)

The critical path of the online multiplier, TOLM , is equal to Eq. 5. Tff takes into account the clock-to-q
delay from the flip-flops being read as well as the setup time for the flip-flops being written to. It is assumed
that the SEL and SUB functions are performed in parallel and take the same amount of time. This assumption
is valid for any 4-input, LUT-based FPGA. In a Xilinx Virtex-4 FPGA, frequencies of over 250 MHz have been
achieved. Table 1 shows the LUT and flip-flop usage for several different precisions. The number of LUTs and
flip-flops increase linearly with the precision, requiring about 18 LUTs and 8 flip-flops per bit.

m 16 32 48 64
LUTs 278 548 820 1104

flip-flops 129 257 385 513

Table 1. Relationship between m and number of LUTs and flip-flops for OLM in Xilinx Virtex-4 FPGAs.

3.3. Linear System Operators
Linear System Operators (LSOs) map an arithmetic expression into an equivalent Linear System of Equations
(LS). Equivalence here means that when the LS is solved, one of the variables (typically the ”first” variable)
evaluates to the same or power-of-two scaled value of the original expression. If we accept that expressions can
be represented as E-graphs, an LSO can also be defined as an operator that transforms an E-graph into a LS.
Consider the expression and its AC shown in Fig. 10a. The LS produced by applying an LSO to this AC is
shown in Fig. 10b. Solving the LS shows that y0 is indeed equal to the value of the original expression.

Depending on the nature of the AC acted upon, LSOs can be classified into different types. The above LSO
is an example of a Polynomial LSO or PLSO because it maps a combination of addition and multiplication
operations, similar to a polynomial expression, into a LS. See reference2 for more details on LSOs.

Mapping arithmetic expressions into LSs by using LSOs is done mainly to take advantage of existing, efficient
online algorithms for solving LSs. The scheme proposed in reference4 solves a LS more efficiently than the

Proc. of SPIE Vol. 5910 59100S­8

y = a + bcd

+

*
a

b c dd
(a)




1 −b 0
0 1 −c
0 0 1








y0

y1

y2



 =




a
0
d





(b)

Figure 10. (a) An arithmetic expression and its AC, (b) the corresponding LSO.

conventional scheme using a network of online adders and multipliers. However, one restriction in the use of the
LSO approach is that inputs should be bounded. While unbounded inputs can be scaled to make them suitable
for the LSO method, the extra cycles wasted to ”descale” the final results can often neutralize the benefits of
this approach. In general, for a linear system Ay = B to be solvable using this scheme, the following convergence
requirements4 should be satisfied: |ai| ≤ 1/8, |yi| < 1, |bi| ≤ 3/4, for all i.

In the context of Bayesian network ACs, LSOs can potentially help us achieve savings in cost/delay if applied
carefully. The typical values taken by probability variables (between zero and one) are a bit on the higher side
of the convergence upper bounds. Therefore, thoughtless application of LSOs to various portions of the E-graph
may not gain anything and may even decrease the efficiency of the overall circuit. But, by careful analysis of
the E-graph, regions could possibly be identified where the inputs can be proven to be bounded for all values of
leaf input values. Such regions could exist, for example, after a cluster of multiplication nodes. Since probability
values are always less than one, the output at each stage diminishes in value as computation propagates up the
chain. These optimizations need further research.

3.4. LSO Modules
LSOs can be implemented using variations of the equation, yi = bi + aiyi+1, where the subscript i indicates a
row in the linear system. An n-row LSO results in (n − 1) modules with δ = 4. The nth module (i = n − 1) is
of the form yn−1 = bn−1 and can be implemented using just a shift register or can be produced by a different
module. The recurrence equation for the ith row is defined in Eq. 6. The square brackets denote the iteration
index and the the second subscript denotes the digit index.

wi[j] = 2(wi[j − 1] − di,j−1 + 2−δ−1bi,δ+j + ai[j − 1]di+1,j−1 + 2−δ−1ai,δ+jdi+1[j − 1]) (6)

di,j = SEL(ŵi[j]) =






1 if ŵi[j] ≥ 0.5
0 if −0.5 < ŵi[j] < 0.5

−1 if ŵi[j] ≤ −0.5
(7)

Since δ = 4, j increments from -3 to m. Let wi[0] = bi[0] = 0.bi,1...bi,δ, ai[0] = 0.ai,1...ai,δ, and di[0] = 0. Eq. 6
and Eq. 7 are executed for j = 1, ...,m. Let ai[j] = CA(ai[j−1], ai,δ+j) and di+1[j−1] = CA(di+1[j−2], di+1,j−1).
ŵi[j] is an estimate of wi[j] calculated with t = 3. The digit-selection function, SEL, chooses the appropriate
value of di,j given ŵi[j].

The implementation of Eq. 6 will now be discussed. The two’s-complement representation is used internally
with a carry-save adder (CSA). As a result, the residual, wi, actually consists of two vectors, wsi and wci.
Thus, there are six terms in the recurrence equation. The sum of all the terms is multiplied by 2, which is
implemented simply as a left-shift by 1 bit. Let the first two terms of the recurrence equation be defined as
zi[j − 1] = wi[j − 1] − di,j−1. Assume zi[j − 1] is calculated in the (j − 1)th cycle, stored in a register, and
is available in cycle j. This assumption will be validated later. The third term of the recurrence equation,
2−δ−1bi,δ+j , is simply the value of bi,δ+j shifted right by (δ + 1) bits. For the fourth term, di+1,j−1 acts as a
selector to choose between −ai[j − 1], 0, or ai[j − 1]. This can be implemented as a 4-input multiplexer with
di+1,j−1 = 1 selecting ai[j − 1], di+1,j−1 = −1 selecting −ai[j − 1], and 0 otherwise. The same applies to the
last term of the recurrence, but now with ai,δ+j being the selector choosing either −2−δ−1di+1[j − 1], 0, or
2−δ−1di+1[j − 1].

Proc. of SPIE Vol. 5910 59100S­9

FA

‘0'‘0' ‘0'‘0' ‘0'‘0'

HA

FA

HA

FA

‘0'‘0'‘0'‘0'

FA

‘0'‘0'

FA

FA

SEL SUB

HA

init

HA

CRA

‘0'‘0'

FA

bi,init4
HA

ai5[j-1] di+1
0[j-1]ai4[j-1]ai3[j-1]ai2[j-1]ai1[j-1]ai0[j-1]

di+1,j-1
ai, +j

bi, +j0
bi, +j1

tlci5[j]

blci5[j]

zci5[j-1]
zsi5[j-1]

zi4[j-1]zi3[j-1]zi2[j-1]zi1[j-1]zi0[j-1]

zi0[j-1] zi1[j-1] zi2[j-1] zi3[j-1] zi4[j-1]
bi,init3bi,init2bi,init1bi,init0

DBB

di,j-11 di,j-10

2

2

(a)

‘0'‘0'

FA

‘0'‘0'

FA
zcik[j-1]
zsik[j-1]

aik[j-1] di+1
k-5[j-1]

ai, +jdi+1,j-1

tlcik[j]

blcik[j]

tlcik-1[j]

blcik-1[j]

zsik-1[j-1] zcik-1[j-1]

22

(b)

‘0'‘0'

aim[j-1]

di+1,j-1
0

‘0'‘0'

di+1
m-5[j-1]

zcim-1[j-1]

HA

HA

zsim-1[j-1]

ai, +j0

ai, +j1

2 2 ai, +jdi+1,j-1

di+1,j-1
1

tlcim-1[j]

blcim-1[j]

(c)

Figure 11. Optimized Datapath for the LSO Module: (a) MSBs, (b) RBs, (c) LSB.

ŵi[j] di,j zi[j]
00.0 0 00.0
00.1 1 11.1
01.0 1 00.0
01.1 1 00.1
10.0 -1 11.0
10.1 -1 11.1
11.0 -1 00.0
11.1 0 11.1

(a)

d+
i,j = ŵs[j] · (ŵ0[j] + ŵ1[j])

d−
i,j = ŵs[j] · (ŵ0[j] + ŵ1[j])

zs
i [j] = ŵi

s[j] · ŵi
0[j] + ŵi

s[j] · ŵi
1[j] + ŵi

0[j] · ŵi
1[j]

z0
i [j] = zs

i [j]
z1
i [j] = ŵi

1[j]

(b)

Figure 12. (a) Selection of di,j and calculation of zi[j] = ŵi[j] − di,j , (b) Boolean equations for zi[j].

Fig. 11a shows an implementation of the six most-significant bits (MSBs) of the datapath, excluding the
CA blocks. Optimizations were made to reduce the number of terms in the recurrence equation so it can be
computed using only a [4:2] adder. One optimization allows the computation of zi[j − 1] = wi[j − 1] − di,j−1 to
be performed in parallel with the selection function. In other words, di,j−1 need not be explicitly known in order
to compute zi[j−1]. The subtraction of di,j−1 from wi[j−1] for cycle j actually occurs in the (j−1)th cycle and
the result is stored in registers zsi and zci. Fig. 12a shows the selected digit and the computation of zi[j] for a
given ŵi[j]. Note that only one fractional bit of ŵi[j] is required to select di,j . Let ŵi[j] = ŵi

s[j]ŵi
0[j]ŵi

1[j] and
zi[j] = zs

i [j]z0
i [j]z1

i [j]. Then the Boolean expressions for di,j and zi[j] are shown in Fig. 12b, and are displayed
in Fig. 11a as the SEL and SUB blocks, respectively. zsi and zci account for two of the inputs into the [4:2]
adder.

Another optimization computes 2−δ−1bi,δ+j + 2−δ−1ai,δ+jdi+1[j − 1] using Boolean expressions rather than
an explicit addition by taking advantage of the fact that the term 2−δ−1bi,δ+j only requires (δ + 2) bits and the
2−δ−1ai,δ+jdi+1[j − 1] term is sign-extended by (δ + 1) bits. Let Bi be the two’s-complement representation of
bi,δ+j and Di+1 be the value of ai,δ+jdi+1[j − 1]. Fig. 13 shows how the two terms are summed together. Let
DBBs

i be the sign bit and DBB0
i be the 5th fractional bit of this combined term. Fig. 14a describes the values

of DBBs
i and DBB0

i for every combination of Ds
i+1 and bi,δ+j . The Boolean expressions for DBBs

i and DBB0
i

are given in Fig. 14b, and are represented in Fig. 11a as the DBB block. This combined term becomes the third
input of the [4:2] adder. The last input of the adder is the ai[j − 1]di+1,j−1 term.

Ds
i+1 Ds

i+1 Ds
i+1 Ds

i+1 Ds
i+1 Ds

i+1 D1
i+1 D2

i+1 · · ·
Bs

i Bs
i Bs

i Bs
i Bs

i B0
i

DBBs
i DBBs

i DBBs
i DBBs

i DBBs
i DBB0

i D1
i+1 D2

i+1 · · ·

Figure 13. Combining the 2−δ−1bi,δ+j and 2−δ−1ai,δ+jdi+1[j − 1] terms

Proc. of SPIE Vol. 5910 59100S­10

Ds
i+1 b+

i,δ+j b−i,δ+j DBBs
i DBB0

i

0 0 0 0 0
0 0 1 1 1
0 1 0 0 1
0 1 1 0 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 1 1

(a)

DBBs
i = ds

i+1 · b+
i + ds

i+1 · b−i + b+
i · b−i

DBB0
i = ds

i+1 ⊗ b+
i ⊗ b−i

(b)

Figure 14. (a) Selection of DBBs
i and DBB0

i , (b) Boolean equations for DBB.

After wi[j] is computed in carry-save form, a carry-ripple adder (CRA) can be used to compute ŵi
3[j]. The

superscript indicates that the wsi[j] and wci[j] vectors are truncated to 3 fractional bits and then added together.
Note that in Fig. 11a, ŵi

4[j] is computed. The reason is that in a Xilinx Virtex FPGA, there is no penalty for
computing a 6-bit CRA rather than a 5-bit CRA. Now that ŵi[j] is known, the SEL and SUB functions can be
performed as described previously.

Fig. 11b shows the repeated bits (RBs) of the optimized datapath for the recurrence. For m bits of precision,
there are (m−5−1) instantiations of the RB slice. Fig. 11c shows the least-significant bit (LSB) of the datapath.
Recall that multiplying an input by -1 in the two’s-complement representation can be done simply by negating
each bit of the input and adding a logical 1 to the unit in the last position (ulp). These ”‘carry-ins”’ are accounted
for in the LSB slice.

TLSO = Tff + T4-to-1 mux + T[4:2] adder + T6-bit CRA + TSEL and SUB (8)

The critical path of an LSO module, TLSO, is equal to Eq. 8. Tff takes into account the clock-to-q delay
from the flip-flops being read as well as the setup time for the flip=flops being written to. It is assumed that the
SEL and SUB functions are performed in parallel and take the same amount of time. In addition, it is assumed
that the DBB block has the same delay as a [3:2] adder. These assumptions are valid for an implementation in
any 4-input, LUT-based FPGA. The LSO module has a slightly more complex implementation than an online
multiplier, resulting in similar delays and resource requirements. In a Xilinx Virtex-4 FPGA, frequencies of over
250 MHz have been achieved. Table 2 shows the LUT and flip-flop usage for several different precisions. The
number of LUTs and flip-flops increase linearly with the precision, requiring about 19 LUTs and 10 flip-flops per
bit.

m 16 32 48 64
LUTs 318 592 872 1154

flip-flops 157 296 431 597

Table 2. Relationship between m and number of LUTs and flip-flops for LSO Modules in Xilinx Virtex-4 FPGAs.

4. SUMMARY
The AC for the ASIA Bayesian network (Fig. 6) has been implemented in a Xilinx Virtex-4 FPGA using a
network of online operators from Section 3. For two-input operators, the original AC without any optimizations
requires 55 multipliers and 20 adders. After incorporating the information from the LMAP file, the number of
multipliers and adders has been reduced to 29 and 12, repectively. The main cause of the drastic reduction in
operators is due to the fact that many And nodes turn out to be L-and nodes. The FPGA resource requirements
for different values of m, the precision in bits, are given in Table 3. The synthesis and mapping tools were allowed
to remove duplicate logic and to replicate logic when needed. Without adding extra latency to the calculation of

Proc. of SPIE Vol. 5910 59100S­11

m 16 32 48 64
LUTs 6,049 11,545 17,677 23,715

flip-flops 3,391 6,484 9,218 12,591

Table 3. Relationship between m and number of LUTs and flip-flops for ASIA in Xilinx Virtex-4 FPGAs.

the inference, a frequency of 200 MHz has been obtained for all values of m. As evident in Table 3, the number
of LUTs and flip-flops required is proportional to the precision.

The network of online adders and online multipliers takes TOL = 29 + m cycles to compute the inference. If
LSOs were used in addition to OLAs and OLMs, the time to compute inference becomes TOL+LSO = 27 + m.
The use of LSOs for this example produces very small savings in cycle time. However, the ASIA arithmetic
circuit is so small that the main advantage of LSOs for BNs, the ability to span across multiple levels, is not fully
utilized. It is expected that for larger BNs, the advantage of LSOs will be greater. Further research is required
to quantify the benefit of LSOs.

The AC for the ASIA Bayesian network is small enough that it can be fully implemented in a single FPGA.
For slightly larger ACs, multiple FPGAs can be used. The online scheme is really beneficial in this situation due
to the fact that only two wires are needed for a module in one FPGA to communicate with a module in another
FPGA. Therefore, the number of I/O pins on the FPGA is usually not the limiting factor in determining how
much inter-FPGA module communication there can be, as would be the case if parallel arithmetic was used.
For even larger ACs which cannot fit in the available hardware, a new approach must be taken as described in
Section 2.2.

Acknowledgements. The authors would like to thank: Mark Chavira for all of his assistance with Bayesian
networks and arithmetic circuits, and Deming Chen for providing us with the tools necessary for this research.

REFERENCES
1. P. Adharapurapu and M.D. Ercegovac. “A composite arithmetic scheme for the evaluation of multinomials”,

Proc. of the 38th Asilomar Conference on Signals, Systems and Computers, Vol. 2, pp. 1889–1893, Nov. 2004.
2. P. Adharapurapu and M.D. Ercegovac, “A Linear-System Operator based Scheme for Evaluation of Multi-

nomials”, ARITH-17, 17th IEEE Symposium on Computer Arithmetic, June 2005.
3. R.H. Brackert, M.D. Ercegovac, and A. Willson. Design of an on-line multiply-add module for recursive

digital filters. Proc. 9th IEEE Symposium on Computer Arithmetic, pp. 34-41, 1989.
4. M.D. Ercegovac, “A General Hardware-Oriented Method for Evaluation of Functions and Computations in

a Digital Computer”, IEEE Transactions on Computers, vol. C-26, no. 7, July 1977, pp. 667-680.
5. A. Darwiche, “A Differential Approach to Inference in Bayesian Networks”, Journal of the ACM, vol. 50, no.

3, May 2003, pp. 280-305.
6. M. Ercegovac, J.M. Muller and A. Tisserand, “FPGA Implementation of Polynomial Evaluation Algorithms”,

Proc. SPIE, vol. 2607, FPGAs for Fast Board Development and Reconfigurable Computing, J. Schewel, ed.,
1995, pp. 177-188.

7. M.D. Ercegovac, T. Lang: Digital Arithmetic, Morgan Kaufmann, 2004.
8. R. Galli and A. F. Tenca, “Design and Evaluation of Online Arithmetic for Signal Processing Applications

on FPGAs”, Proc. SPIE, vol. 4474, pp. 134-44, 2001.
9. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann,

1988.
10. D. Tullsen and M.D. Ercegovac. Design and implementation of an on-line algorithm. In Proc. SPIE Confer-

ence on Real-Time Signal Processing, San Diego, August 1986.
11. S.L. Lauritzen, and D.J. Spiegelhalter, “Local computations with probabilities on graphical structures and

their application to expert systems”, Readings in Uncertain Reasoning, G. Shafer and J. Pearl, Eds. Morgan
Kaufmann Publishers, San Francisco, CA, 415-448, 1990.

12. M. Chavira and A. Darwiche, “Compiling Bayesian networks with local structure”, IJCAI-2005.

Proc. of SPIE Vol. 5910 59100S­12

