
On the Design of an On-line Complex Matrix
Inversion Unit

Robert McIlhenny
Computer Science Department

California State University, Northridge
Northridge, CA 91330

rmcilhen@csun.edu

Miloš D. Ercegovac
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

milos@cs.ucla.edu

Abstract— In this paper, we present a novel implementation for
the inverse of an n-by-n matrix consisting of complex elements,
using complex number on-line arithmetic, based on adopting
a redundant complex number system (RCNS) to represent
complex operands as a single number. We present comparisons
with (i) a real number on-line arithmetic approach, and (ii)
a real number arithmetic parallel approach, to demonstrate a
significant improvement in cost and delay.

I. INTRODUCTION

The inverse of a matrix is an important operation in the
field of linear algebra, as well as various business and input-
output models. The inverse of an n-by-n matrix A is denoted
A−1 and satisfies AA−1 = A−1A = In, where In is the n-
by-n identiy matrix containing 1’s along the main diagonal
and 0’s elsewhere. The inverse serves as a way to ”divide”
matrices, in that if AB = C, then A = CB−1 and B =
A−1C. If a matrix A has no inverse (the determinant of A is
0), it is called singular. Various techniques for inverting an n-
by-n matrix include: (i) the adjoint-matrix method [2], (ii) LU
decomposition [8], and (iii) Gauss-Jordan elimination [7]. Due
to the regular structure and relatively low cost of the Gauss-
Jordan elimination method, it will be utilized for implementing
the complex matrix inversion unit.

The Gauss-Jordan elimination method extends the original
n-by-n matrix A to a n-by-2n matrix:

[A|I] =

⎡
⎢⎢⎢⎣

a11 · · · a1n 1 0 · · · 0
a21 · · · a2n 0 1 · · · 0

...
. . .

...
...

...
. . .

...
an1 · · · ann 0 0 · · · 1

⎤
⎥⎥⎥⎦ (1)

Gaussian elimination is used to ”zero-off” non-diagonal
elements on the left half of the matrix, and the diagonal
elements of the left half are scaled such that the resultant
n-by-2n matrix is:

[I|A−1] =

⎡
⎢⎢⎢⎣

1 0 · · · 0 a−1

11
· · · a−1

1n

0 1 · · · 0 a−1

21
· · · a−1

2n
...

...
. . .

...
...

. . .
...

0 0 · · · 1 a−1

n1
· · · a−1

nn

⎤
⎥⎥⎥⎦ (2)

where A−1 is the matrix inverse of A.

II. COMPLEX NUMBER ON-LINE FLOATING-POINT

ARITHMETIC

On-line arithmetic [4] is a class of arithmetic operations
in which all operations are performed digit serially, in a
most significant digit first (MSDF) manner. Several advan-
tages, compared to conventional parallel arithmetic, include:
(i) ability to overlap dependent operations, since on-line algo-
rithms produce the output serially, most-significant digit first,
enabling successive operations to begin before previous op-
erations have completed; (ii) low-bandwidth communication,
since intermediate results pass to and from modules digit-
serially, so connections need only be one digit wide; and (iii)
support for variable precision, since once a desired precision
is obtained, successive outputs can be ignored. One of the key
parameters of on-line arithmetic is the on-line delay, defined
as the number of digits of the operand(s) necessary in order
to generate the first digit of the result. Each successive digit
of the result is generated one per cycle. This is illustrated in
Figure 1, with on-line delay δ = 4. The latency of an on-
line arithmetic operator, assuming m-digit precision is then
δ + m − 1.

δ=4

input

compute

output

Fig. 1. On-line delay of a function

Complex number on-line arithmetic [6] uses a class of
on-line arithmetic operators on complex number operands.
For efficient representation, a Redundant Complex Number
System (RCNS) [1] is adopted. A RCNS a radix rj system,
in which digits are in the set {−a, . . . , 0, . . . , a}, where
r ≥ 2 and �r2/2� ≤ a ≤ r2 − 1. Such a number system
can be denoted RCNSrj,a. A Redundant Complex Number
System with r = 2, a = 3 denoted RCNS2j,3, allows ease
of the definition of primitive on-line arithmetic modules, as
well as ease of conversion to and from other representations.

11721­4244­0132­1/05/$20.00 ©2005 IEEE



This number system was introduced as Quarter-imaginary
Number System in [5]. For implementation of the complex
matrix inversion unit, in order to permit a relatively wide
range of input values, we assume floating-point arithmetic.
Three on-line floating-point arithmetic operations are used:
(i) RCNS2j,3 on-line floating-point addition; (ii) RCNS2j,3

on-line floating-point multiplication; and (iii) RCNS2j,3 on-
line floating-point division. The recurrence algorithms and
implementation parameters when mapped to a Xilinx Virtex
FPGA are discussed in detail.

Using RCNS2j,3, a floating-point complex number x =
(XR + jXI) · (2j)ex can be normalized with regard either
to the real component XR or the imaginary component XI ,
depending on which has larger absolute value. The exponent
ex is shared between the real and imaginary component.
Exponent overflow/underflow can be handled by setting an
exception flag, and allowing processing of results (although
erroneous) to continue.

A RCNS2j,3 fraction x is considered normalized if 2−1 ≤
max(|XR|, |XI |) < 1. The output of a complex number
operation can be undernormalized for several reasons:

1. The range of an output determined by the on-line algo-
rithm allows it to be undernormalized.

2. Digit cancellation resulting from the addition/subtraction
of numbers with the same exponent value.

In this paper, we assume operands of an RCNS2j,3 on-
line algorithm have non-zero most significant digits and
are normalized. When the result Z exceeds the range of
a normalized fraction (i.e. max(|ZR, ZI |) ≥ 1) then the
exponent is incremented. When the result is below the range
of a normalized fraction (i.e. max(|ZR, ZI | < 1

2
), then the

exponent is decremented and leading zeros are discarded. The
normalization algorithm which takes as input the generated
output digit zk, the output exponent ez and the on-line delay
for the arithmetic operation δ is shown below. This is similar
to the normalization algorithm presented in [3] for radix-2
on-line rotation.

NORM(zk, ez, δ)

/* Initialization */
done = 0

/* Computation */
if k = (δ − 2) and zk �= 0 then

ez = ez + 2
done = 1

if k = (δ − 1) and zk �= 0 and not(done) then
ez = ez + 1
done = 1

else if k ≥ δ and zk = 0 and not(done) then
ez = ez − 1

else if (k ≥ δ and zk �= 0) then
done = 1

end if

III. RECODING ALGORITHMS

Although RCNS2j,3 allows flexibility in representation,
there are also several drawbacks:

• Handling digits 3 and −3 requires producing significand
multiples 3X and −3X , requiring an extra addition step.

• A significand X with fractional real and imaginary
components XR and XI can have integer digits,
such as (11.3212)2j = 3

8
+ 3

8
j, which can compli-

cate ensuring complex significands within the range
max(|XR|, |XI |) < 1.

To handle these cases, several recoding modules are pre-
sented: (i) digit-set recoding; and (ii) most-significant-digit
recoding.

A. Digit-set recoding

In order to reduce the complexity introduced by han-
dling digits −3 and 3, digit-set recoding initially recodes
a RCNS2j,3 digit xk ∈ {−3, . . . , 3} into a pair of digits
(tk−2, wk), in which tk−2 ∈ {−1, 0, 1} and wk ∈ {−2, . . . , 2}
such that xk = −4tk−2 + wk. Then a RCNS2j,2 digit χk

is computed as χk = tk + wk. In order to restrict χk ∈
{−2, . . . , 2}, two cases of pairs of values must be prevented:
(i) tk = 1, wk = 2, (ii) tk = −1, wk = −2. To do so, xk+2 is
examined. If xk+2 ≤ −2 and xk = 2, which could allow the
first case, xk is recoded as (1, 2), otherwise as (0, 2). In the
same way, if xk+2 ≥ 2 and xk = −2, which could allow the
second case, xk is recoded as (1, 2), otherwise as (0, 2) Then
it is assured that χk ∈ {−2, . . . , 2}. The digit-set recoding
algorithm DSREC is shown below.

DSREC(xk, xk+2)

(tk−2, wk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if xk = 3
(1, 2) if xk = 2 and xk+2 ≥ 2
(0, 2) if xk = 2 and xk+2 < 2
(0, 1) if xk = 1
(0, 0) if xk = 0
(0, 1) if xk = 1
(0, 2) if xk = 2 and xk+2 > −2
(1, 2) if xk = 2 and xk+2 ≤ −2
(1, 1) if xk = 3

χk = tk + wk

B. Most-significant-digit recoding

In order to handle carries produced when performing oper-
ations on significands consisting of RCNS2j,3 digits, most-
significant-digit recoding recodes most-significant residual
digits w−1, w0 ∈ {−1, 0, 1} of respective weights (2j)1 = 2j
and (2j)0 = 1, and digits w1, w2 ∈ {−3, . . . , 3}, of respective
weights (2j)−1 and (2j)−2, into digits ω1, ω2 ∈ {−3, . . . , 3}
of respective weights (2j)−1 and (2j)−2. The algorithm
MSREC for recoding general digits wk−2 and wk into digit
ωk is shown next.

1173



MSREC(wk−2, wk)

ωk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if (wk−2 = 0 and wk = 3) or
(wk−2 = 1 and wk = 1)

2 if (wk−2 = 0 and wk = 2) or
(wk−2 = 1 and wk = 2)

1 if (wk−2 = 0 and wk = 1) or
(wk−2 = 1 and wk = 3)

0 if wk−2 = 0 and wk = 0
1 if (wk−2 = 0 and wk = 1) or

(wk−2 = 1 and wk = 3)
2 if (wk−2 = 0 and wk = 2) or

(wk−2 = 1 and wk = 2)
3 if (wk−2 = 0 and wk = 3) or

(wk−2 = 1 and wk = 1)

IV. RCNS2j,3 ON-LINE FLOATING POINT ARITHMETIC

OPERATIONS

An overview and implementation description for the oper-
ators used in the design of the complex matrix inversion unit
are shown next. The implementation parameters when mapped
to a Xilinx Virtex FPGA are discussed in detail.

A. RCNS2j,3 on-line floating-point addition

RCNS2j,3 floating-point addition (z = x + y) is defined
such that given inputs x = (XR + jXI) · (2j)ex and y =
(YR + jYI) · (2j)ey , the output z = (ZR + jZI) · (2j)ez is
produced such that

ZR = XR + YR

ZI = XI + YI

ez = max(ex, ey)
(3)

Each output digit at step k − δ, namely zk−δ is generated
based on input digits xk and yk. The design of a m-digit
significand and e-bit exponent RCNS2j,3 on-line floating
point adder is shown in Figure 2. The SUBE unit computes
the difference of the exponents. The ALIGN unit performs
alignment of operand y ′

k to synchronize the arrival of the input
digits. The SWAP unit exchanges the operands if necessary.
The PPM and MMP modules are simple full-adders that
appropriately negate (indicated by ”-” on the port) inputs and
outputs to perform borrow-save addition. The NORM unit
normalizes the result by updating the output exponent e z . A
summary of cost of individual modules is shown in Table I.
Assuming m = 24 and e = 8, the cost is 108 CLB slices. The
on-line delay is δ = 3.

B. RCNS2j,3 on-line floating-point multiplication

RCNS2j,3 floating-point multiplication (z = xy) is defined
such that given inputs x = (XR + jXI) · (2j)ex and y =
(YR + jYI) · (2j)ey , the output z = (ZR + jZI) · (2j)ez is
produced such that

ZR = XRYR − XIYI

ZI = XRYI + XIYR

ez = ex + ey

(4)

TABLE I

COST OF RCNS2j,3 ON-LINE FLOATING-POINT ADDER

Module Count CLB slices

SUBE 1 e

ALIGN 1 3m

SWAP 1 e

PPM/MMP 4 4

NORM 1 2e

Total cost 3m + 4e + 4

x’
k,1
+

y’
k,1
+

x’
k,1
-

+ + -

-+
PPM

x’
k,0
+

y’
k,0
+

x’
k,0
-

+ + -

-+
PPM

- - +

- +
MMP

y’
k,1
-

- - +

- +
MMP

zz
+
k-δ,1

D

D

y’
k,0
+

D

D

D

D

SUBE

ex ey x y

SWAP

ALIGN

-
k-δ,1 zz

+
k-δ,0

-
k-δ,0y

k k

’
k

Significand calculation

x’
k

Exponent calculation

NORM

ez

ezy’
k

Fig. 2. RCNS2j,3 on-line floating-point adder

An RCNS2j,3 on-line floating-point multiplier can be de-
signed as a series of modular slices Mi, where each slice
consists of two borrow-save digit multipliers, a 3:1 borrow-
save digit adder, a pair of digit-wide latches, a D flip-flop,
and a digit-wide register of D flip-flops. The operands xk and
yk are recoded into digit set {−2, . . . , 2} using two DSREC
units. The two most significant digits of the recurrence are
determined using two MSREC units which perfom output
digit selection as well as handle potential most significant
carry-out bits from the adders. The ADDE unit adds the two
input exponents to produce the exponent of the output, not
considering exponent overflow/underflow. The NORM unit
normalizes the result by updating the output exponent e z each
cycle until the output digit zk−δ is non-zero. The design of a
m-digit significand and e-bit exponent on-line floating-point
multiplier is shown in Figure 3. The number of individual
module types utilized, the cost per module type, and the total
overall cost are summarized in Table II. Assuming m = 24
and e=8, the total cost is 452 CLB slices. The on-line delay
is δ = 9.

1174



TABLE II

COST OF RCNS2j,3 ON-LINE FLOATING-POINT MULTIPLIER

Module Count CLB slices

ADDE 1 e

DSREC 2 24

BSD mult. (⊗) 2m 8m

BSD adder (3:1) m 8m

MSREC 2 20

NORM 1 2e

Total cost 16m + 3e + 44

START

D

L L

D

L L

3:1

D

L L

3:1

DD

D

L L

3:1

D

D

L L

3:1

D

M
1

M
2

M
3

M
m-1

M
m

"1"
"1"

D

"0"

MSREC

3:1

MSREC

zk-δ

DDD

xk

yk

DSREC

DSREC

ADDE

ex ey

ez

NORM

ez

Fig. 3. RCNS2j,3 on-line floating-point multiplier

C. RCNS2j,3 on-line floating-point division

RCNS2j,3 floating-point division (z = x/y) is defined such
that given inputs x = (XR + jXI) · (2j)ex and y = (YR +
jYI) · (2j)ey , the output z = (ZR + jZI) · (2j)ez satisfies

ZR = XRYR+XIYI

Y 2
R

+Y 2
I

ZI = XIYR−XRYI

Y 2
R

+Y 2
I

ez = ex − ey

(5)

A RCNS2j,3 on-line floating-point divider can be designed
as a series of modular slices, where each slice consists of two
borrow-save digit multipliers, a 3:1 borrow-save digit adder,
a pair of digit-wide latches, a D flip-flop, and a digit-wide
register of D flip-flops. The operand digit yk and the output
digit zk−δ are recoded into digit set {−2, . . . , 2} using two
DSREC units. The most significant digits of the recurrence
are determined using two MSREC units which handle potential
most significant carry-out bits from the adders. The SELDIV
unit, selects the output digit zk−δ. The SUBE unit subtracts
the two exponents to produce the exponent of the output,
not considering exponent overflow/underflow. The digit x k is
appended to the most significant end of the vector product
Z[k−1]yk. The NORM unit normalizes the result by updating
the exponent ez . The design of a m-digit significand and e-bit
exponent on-line floating-point divider is shown in Figure 4.
The number of individual module types utilized, the cost per

module type, and the total overall cost are summarized in
Table III. Assuming m = 24 and e=8, the total cost is 545
CLB slices. The on-line delay is δ = 9.

TABLE III

COST OF RCNS2j,3 ON-LINE FLOATING-POINT DIVIDER

Module Count CLB slices

SUBE 1 e

DSREC 2 24

BSD mult. (⊗) 2m 8m

BSD adder (3:1) m 8m

MSREC 2 20

SELDIV 1 93

NORM 1 2e

Total cost 16m + 3e + 137

D D

L L

3:1

D

L L

3:1

DD

D

L L

3:1

D

D

L L

3:1

D

M
1

M
2

M
3

M
m-1

M
m

"1"
"1"

"0"

MSREC

3:1

MSREC

DDD

xk

D

START

yk

DSREC

L
DSREC

SUBE

ex ey

|Y[k]|

SELDIV

zk-δ

ez

NORM

ez

Fig. 4. RCNS2j,3 on-line floating-point divider

V. IMPLEMENTATION

Each ”sweep” of the Gauss-Jordan elimination method
consists of zeroing-off” a non-diagonal element a i,j where
i �= j. The other elements ai,k in the same row, where k �= j
are scaled as element a′

i,k where

a′
i,k = ai−1,k −

(
ai−1,j

ai,j

)
ai,k (6)

Since this operation is applied toward (n − 1) elements
within each of (n−1) rows successively n times, until finally
only diagonal elements remain in the left half of the matrix, at
which point the diagonal elements are scaled to produce 1’s
along the diagonal requiring n2 divisions, the total number
of arithmetic operations is: n(n − 1)2 additions/subtractions,
n(n− 1)2 multiplications, and 2n(n− 1) divisions. The total
delay is: n additions/subtractions, n multiplications, and (n +
1) divisions. We compare a parallel radix 2 approach, an on-
line radix 2 approach, and the on-line RCNS2j,3 approach.

1175



A. RCNS2j,3 on-line network

An n-by-n complex matrix inversion unit can be designed
as a network of RCNS2j,3 floating-point arithmetic operators.
For 24-bit significands and 8-bit exponents, the cost and on-
line delay of a complex floating-point adder is 108 CLB slices
and 3 cycles, respectively, the cost and on-line delay of an
on-line complex floating-point multiplier is 452 CLB slices
and 9 cycles, respectively, and the cost and delay of an on-
line complex floating-point divider is 545 CLB slices and 9
cycles, respectively. The total cost is 560n3 − 30n2 − 530n
CLB slices. The total latency, summing the on-line delays to
produce the first digit, after which the remaining 23 digits are
produced one per cycle, is 21n + 32 cycles.

B. Radix 2 on-line network

An n-by-n complex matrix inversion unit can be alterna-
tively designed as a network of radix 2 floating-point arith-
metic operators, as described in [6]. For 24-bit significands
and 8-bit exponents, the cost and on-line delay of an equivalent
complex floating-point adder is 140 CLB slices and 3 cycles,
respectively, the cost and on-line delay of an equivalent on-
line complex floating-point multiplier is 868 CLB slices and 7
cycles, respectively, and the cost and delay of an equivalent on-
line complex floating-point divider is 1502 CLB slices and 12
cycles, respectively. The total cost is 1008n3+988n2−1996n
CLB slices. The total latency, summing the on-line delays to
produce the first digit, after which the remaining 23 digits are
produced one per cycle, is 22n + 35 cycles.

C. Radix 2 parallel network

An n-by-n complex matrix inversion unit can be alterna-
tively designed as a network of radix-2 parallel arithmetic
operators. The library of Xilinx CORE floating-point arith-
metic modules [9], which can be scaled in terms of precision
is used. For 24-bit significands and 8-bit exponents, the cost
and latency of an equivalent parallel complex floating-point
adder is 672 CLB slices and 11 cycles, respectively, the cost
and delay of an equivalent parallel complex floating-point
multiplier is 1292 CLB slices and 17 cycles, and the cost
and delay of an equivalent parallel complex floating-point
divider is 3492 CLB slices and 44 cycles. The total cost is
1964n3 + 3056n2 − 5020n CLB slices. The total latency is
72n + 44 cycles.

D. Cost comparison

The cost of the proposed RCNS2j,3 on-line network, and
the alternative radix 2 on-line network and the radix 2 parallel
network are compared for the implementation of an n-by-n
complex matrix inversion unit for various values of n. In each
case, we assume floating-point operands consisting of 24-digit
(or bit) significands and 8-bit exponents, as shown in Table IV.

E. Delay comparison

The delay of the proposed RCNS2j,3 on-line network, and
the alternative radix 2 on-line network and the radix 2 parallel
network are compared for the implementation of an n-by-n

complex matrix inversion unit for various values of n. In each
case, we assume floating-point operands consisting of 24-digit
(or bit) significands and 8-bit exponents, as shown in Table V.

TABLE IV

COMPARISON OF CLB COSTS FOR COMPLEX MATRIX INVERSION

n RCNS2j,3 Radix-2 Radix-2

on-line on-line parallel

2 3192 7884 15932

3 13260 30120 65472

4 33240 72236 154512

5 66600 140720 296800

6 116700 241320 504120

TABLE V

COMPARISON OF CYCLE LATENCIES FOR COMPLEX MATRIX INVERSION

n RCNS2j,3 Radix-2 Radix-2

on-line on-line parallel

2 44 45 72

3 95 101 260

4 116 123 332

5 137 145 404

6 158 167 476

VI. CONCLUSION

We have demonstrated a new approach for implementating
an n-by-n complex matrix inversion unit, based on using
complex number on-line arithmetic modules which adopt
a redundant complex number system (RCNS) for efficient
representation. Significant improvement in cost in comparison
to a radix 2 on-line approach and a radix 2 parallel approach,
as well as a significant reduction in latency in comparison
to a radix 2 parallel appraoch have been shown. This offers
motivation for further research into other applications utilizing
complex number operations.

REFERENCES

[1] T. Aoki, Y. Ohi, and T. Higuchi, “Redundant complex number arithmetic
for high-speed signal processing,” 1995 IEEE Workshop on VLSI Signal
Processing, Oct. 1995, pp. 523-532.

[2] A. Ben-Israel and T.N.E. Greville, ”Generalized Inverses: Theory and
Applications”, 1977.

[3] M.D. Ercegovac and T. Lang, ”On-line scheme for computing rotation
factors,” Journal of paralle and distributed computing, 1988. pp. 209-
227.

[4] M.D. Ercegovac and T. Lang, “Digital Arithmetic,” Morgan Kaufmann
Publishers, 2004.

[5] D.E. Knuth, “The art of computer programming,” Vol. 2, 1973.
[6] R. McIlhenny, “Complex number on-line arithmetic for reconfigurable

hardware: algorithms, implementations, and applications,” Ph.D. Disser-
tation, University of California, Los Angeles, 2002.

[7] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Gauss-
Jordan elimination,” Numerical Recipes in FORTRAN: The Art of
Scientific Computing, 1992, pp. 27-32.

[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “LU
Decomposition and Its Applications,” Numerical Recipes in FORTRAN:
The Art of Scientific Computing, 1992, pp. 34-42.

[9] Xilinx Corporation, “Xilinx Data Book,” 2004.

1176




