
A Composite Arithmetic Scheme for Evaluation of Multinomials∗

Pavan Adharapurapu
Computer Science Department

Univ. of California at Los Angeles
pavan@cs.ucla.edu

Miloš D. Ercegovac
Computer Science Department

Univ. of California at Los Angeles
milos@cs.ucla.edu

Abstract: We discuss the implementation aspects

of the Multinomial Online Evaluation (MOLE)

scheme [1] and compare its delay and cost with

three other schemes. The MOLE scheme is meant

for the evaluation of a generic multinomial rep-

resented as an evaluation graph. In this paper,

we compare the MOLE scheme with the follow-

ing schemes: A network of online adders and mul-

tipliers, a network of online adders and MLSOs,

and a network of conventional multioperand adders

and multipliers. A strawman example in the form

of a three-variable multinomial and its evalua-

tion graph is used to do the comparison analysis.

Compared to the conventional implementation, the

MOLE scheme is estimated to have favorable delay

at a higher cost.

1 Introduction

Consider the following three-variable multinomial:

M(x, y, z) = x + y +
1

12
x2y +

1

23
xyz2 +

1

23
xy3z3 (1)

An E-graph of this multinomial is shown in Figure 1. An

evaluation graph (E-graph) is a rooted directed acyclic

graph (DAG) representation of a multinomial in a factored

form. It is important to note that an E-graph need not

necessarily have a tree structure.

The goal of this paper is to assess the recently

proposed [1] Multinomial On-Line Evaluation (MOLE)

scheme for evaluating multinomials. To do this, we discuss

the implementation of the MOLE method and compare its

delay and cost against three other schemes for evaluation

∗Copyright 2004 IEEE. Published in the Proceedings of the 38th
Annual Conference on Signals, Systems, and Computers, November
7-10, 2004, Asilomar, Pacific Grove, CA. Personal use of this material
is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained
from the IEEE.

1

23

+

+ *

*
+

+

*x x y
x

y

y z z

x
y y

x

z

1

12

Figure 1: An E-graph corresponding to the multinomial

M

of the above E-graph. We hope, through this exercise, to

bring out the advantage of the MOLE method for evalu-

ating arbitrary multinomials.

The current research is prompted by recent discover-

ies [2] in the Bayesian Networks field relating to the rep-

resentation of a Bayesian Network using a characteristic

multinomial. In addition to this, algorithms have been pro-

posed which represent the Bayesian Network Multinomial

(which is exponential in size) as a compact E-graph. Evalu-

ation of this E-graph is required for probabilistic inference,
the most important operation performed on Bayesian Net-

works. Even after representing them as compact E-graphs,

such multinomials are not amenable to software evaluation

for real-time applications.

In the rest of the paper, we compute the delay and cost

of the MOLE scheme and three other schemes viz., Scheme

I (Network of Online Adders and Multipliers), Scheme II

(Network of Online Adders and MLSOs1) and Scheme III

(Network of Conventional Multioperand Adders and Mul-

tipliers). We summarize the results in the final section.

In calculating delay and area estimates for the various

schemes, we will use the following table of values for stan-

dard components. We use the area/delay of a Full Adder

(aFA and tFA) as the unit area/delay. We do not consider

estimates for wiring, layout, etc.

1introduced later

18890-7803-8622-1/04/$20.00 ©2004 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on December 8, 2008 at 00:33 from IEEE Xplore. Restrictions apply.

TABLE 1: DELAY/COST VALUES PER BIT FOR STANDARD COM-
PONENTS

Area Delay

FA 1.0 1.0

[4:2] cell 2.0 1.5

[5:2] cell 2.5 2.0

2:1 mux 0.5 0.5

Flip Flop 0.6 1.0

Buffer 0.5 0.5

Digit selection 3.0 1.5

2 The MOLE scheme

The MOLE scheme consists of the following steps:

• Applying Linear-System Operators (LSOs) to convert

sub-graphs of the E-graph into systems of linear equa-

tions.

• Solving these linear systems using the E-method [3] in

an online fashion.

An LSO maps an E-graph (or a sub-graph) into an

equivalent system of linear equations. Equivalence means

one of the unknowns (typically y0) of the linear system

has the same value as the graph. Two types of LSOs are

defined - the Multiplication LSO (MLSO) and the Polyno-

mial LSO (PLSO). The former maps a multiplication (“*”)

node into a linear system while the latter does the same for

an alternating string of addition (“+”) and multiplication

nodes satisfying the following constraints: the “+” nodes

have only two children, all nodes have only one parent and

the lowest node of this string is a “*” node. MLSO and

PLSO are illustrated in Figures 2 and 3 respectively.

Application of the LSOs is done using the following al-

gorithm:

1. Arrange the E-graph into levels based on maximum

distance from root node.

2. Do a breadth first search starting from the root to

identify all maximal sub-graphs that can be mapped

using a PLSO and replace them by a PLSO.

Figure 2: A “*”’ node mapped to a linear system by an

MLSO.

3. Map the rest using MLSOs and online adders(OLAs).

It can be shown [1] that it is more efficient, delay wise,

to map a PLSO-mappable string-of-nodes using a PLSO

rather than a combination of MLSOs and OLAs. Hence,

the emphasis on PLSOs in the above algorithm.

The result of applying the MOLE scheme is a network of

LSOs which are serially connected. The network is timed

so that all LSOs on a given level start simultaneously. This

starting time is determined by when the online module

with the largest online delay in the immediately lower level

has produced its first output bit. This arrangement may

require buffers to hold output bits from modules with un-

equal online delays (although this is not required for the

example E-graph).

We use an online method - the E-method [3] - for solving

system of linear equations. For a system with n non-trivial

unknowns, the E-method uses n online multiply-add mod-

ules (connected serially), each computing one of the un-

knowns in a digit-by-digit manner starting with the most

significant digit. “Trivial” unknowns given by equations

such as yi = t don’t need an online module. They are ei-

ther produced by another module or, in the case when it

is a direct input, can be extracted serially from the input

register. The digit set for the output is {-1,0,1}.
All the coefficients of the linear system are in a serial

form. The ith module executes the following recurrence

equation for as many iterations as the required precision

of the output:

w(i)[j] = 2(w(i)[j − 1] + 2−(δ+1)b(i)(δ+j) −
d(i)[j − 1] + a(i)[j − 1] d(i + 1)[j − 1] +

2−(δ+1) a(i)(δ+j) D(i + 1)[j − 1]) (2)

The notation used is as follows: the number in the square

brackets indicates iteration number, that in braces indicate

the row number and the subscript indicates the fractional

digit’s position. Convergence of the above recurrence is

satisfied if all inputs are less than 1/8. The online delay, δ,
is 2. Thus, δ of MLSO and PLSO is 2 cycles irrespective

of the number of operands.

For further details on the MOLE method, please con-

sult [1].

2.1 Delay and Cost

In this subsection, we calculate the area and cost of the

MOLE scheme for the E-graph of Figure 1. We shall as-

sume that the inputs for the multinomial are sufficiently

small so that the convergence requirements of the algo-

rithm driving the MOLE scheme are satisfied without re-

quiring the pre-scaling of inputs. While this may not hold

true for all applications, it does hold for many classes of

1890

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on December 8, 2008 at 00:33 from IEEE Xplore. Restrictions apply.

Figure 3: A string of nodes mapped to a linear system by a PLSO.

applications such as Bayesian Networks (which deal with

probabilities).

Figure 4 shows the resulting circuit obtained by apply-

ing the MOLE method. As mentioned earlier, we first do a

top-down search to find possible subgraphs for PLSO ap-

plication. These are shown shaded in grey. We map the

rest using MLSOs and OLAs. The example E-graph re-

quires two PLSOs, and one OLA. It does not require any

MLSOs.

The online module is implemented using a [5:2] adder

(delay, [4:2] for area2), four registers, two muxes with com-

plementers and a digit SEL unit. See [4, pg. 576] for more

details on the module implementation. Thus, the area of

each m-precision module is given by:

Amodule = a[4:2] + 4 · aREG + 2 · aMUX + aSEL (3)

= (5.4m + 3.0) aFA (4)

Note that only the first three terms of (3) depend on m.

The cycle time for the module is given by:

Tcycle = t[5:2] + tREG + tMUX + tSEL

= 5 tFA (5)

In Figure 4, the “root” PLSO has seven non-trivial

unknowns and hence requires seven online modules of

the kind mentioned before. The other PLSO has three

non-trivial unknowns and requires three online modules.

The remaining OLA is a simple two-operand online adder

whose area will later be estimated to be 5 aF A.

Thus, the total area for the MOLE implementation for

an output precision of m is given by:

A(MOLE) = 7 · (5.4m + 3.0) + 3 · (5.4m + 3.0) + 5

= (54m + 35) aFA (6)

The delay analysis is simple in this case. Any LSO

has an online delay of 2 cycles. This follows directly from

2this is because most of the unknowns of the PLSO linear system
have the RHS matrix coefficient as zero and can be implemented
using just a [4:2] adder.

the recurrence (2). By definition of online delay, the first

output bit is obtained after 2 + 1 = 3 cycles. The two-

operand online adder has an online delay of, again, 2 cycles.

Thus, the first bit of the final output (the multinomial

value) is obtained after 9 cycles and all m bits of the output

are obtained after

T (MOLE) = (9 + m) tcycle = (45 + 5m) tFA (7)

Figure 4 lists the component-wise breakup of areas and

delays.

We can also calculate the area and delay when we only

have access to modules of precision m/k. The E-method

allows a linear tradeoff between latency and area. With k
times smaller-precision modules, one has to perform each

iteration k times to cover the full precision. The total

area and delay, consequently, are (54m/k + 35) aFA and

(45 + 5km) tFA respectively.

3 Scheme I

This scheme involves replacing the “*” and “+” nodes

of the E-graph with multioperand online adders and mul-

tipliers. Each multioperand adder and multiplier will be

built as a tree network of two-operand online adders and

multipliers. This is equivalent to expanding the graph so

that all nodes have exactly two children and replacing each

node with a two-operand online adder/multiplier. As in

the MOLE scheme, all units (adders/multipliers) in a given

level start execution simultaneously and may require out-

put buffers.

3.1 Delay and Cost

As mentioned above, each “*” node is replaced by a

tree of two-operand online multipliers. The δ of two-

operand online multiplier is 3 cycles. The cycle time for a

two-operand online multiplier is roughly the same as the

E-method online module because of similar structure [4,

1891

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on December 8, 2008 at 00:33 from IEEE Xplore. Restrictions apply.

OLA

PLSO

PLSO+

+ *

*
+

+

*x x y
x y

y z z

x y y z

x
x y

x y

x y z

(37.8m + 21, 3)

(16.2m + 9, 3)

(5, 3)1
12

1
23

1
12

1
23

Figure 4: Circuit obtained after application of MOLE scheme. The pair (a,d) on the LSOs denotes (area, online delay).

pg.520]. Thus, an n-operand online multiplier has an on-

line delay of:

δn−mult = (3 + 1) · log(n) · tcycle

= 4 · log(n) · tcycle

= 20 · log(n) tFA (8)

A two-operand online adder has a δ of 2 cycles. The cy-

cle time for this adder is less than that of the two-operand

multiplier. Because of the need for a common clock, the

cycle time is fixed to the larger of the two. Thus, an n-

operand online adder has an online delay of:

δn−add = 3 · log(n) · tcycle

= 15 · log(n) tFA (9)

The example E-graph has five levels when expanded.

Except for the root level, every other level has a “*” node

which means the online delay for these levels will be 3

cycles each. The root level has a δ of 2. Thus, the total

delay for m bits of the output is:

T (SchemeI) = (4 · 4 + 3 + m) tcycle

= (95 + 5m) tFA (10)

A two-operand online multiplier has a similar structure

to the online module unit and its area, thus, is (5.4m +

3.0) aFA.The two-operand online adder is built using two

FAs and five latches (see [4, pg. 506]). Consequently, its

area is 5.0 tFA. Applying Scheme I for the example E-

graph requires ten such multipliers and four such adders.

Thus, the total area for Scheme I is:

A(SchemeI) = 10 · (5.4m + 3.0) + 4 · 5.0

= (54m + 50) aFA (11)

4 Scheme II

Scheme II differs from Scheme I only in the fact that the

“*”’ nodes of the E-graph are replaced by MLSOs instead

of online multipliers. This is clearly advantageous in terms

of delay since the online delay of an MLSO is 2 cycles

irrespective of the number of operands.

4.1 Delay and Cost

When Scheme II is applied to the example E-graph,

there will only be MLSOs and online adders in the result-

ing circuit, all of which have a δ of 2 cycles. Since there

are four levels in the expanded E-graph, the total online

delay of the circuit is 12 cycles and the total delay for the

Scheme II to produce m bits of the output is:

T (SchemeII) = (12 + m) tcycle = (60 + 5m) tFA (12)

Scheme II requires four OLAs and three MLSOs. All

three MLSOs require ten online modules in total. Thus,

the total area for Scheme II is:

A(SchemeII) = 4 · 5.0 + 10 · (5.4m + 3.0)

= (54m + 50) aFA (13)

5 Scheme III

In this scheme, each of the “*” and “+” nodes are re-

placed by conventional arithmetic units to obtain a net-

work of conventional arithmetic modules. Each “*” node

is replaced by a tree of two-operand multipliers and a reg-

ister. Each “+” node is replaced by a tree of two-operand

adders and a register. Again, this is the same as ex-

panding the E-graph so that each node has exactly two

children and replacing each node with the two-operand

1892

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on December 8, 2008 at 00:33 from IEEE Xplore. Restrictions apply.

z

+

+ *

* + * +

* * * * *

* *

x

xx y

1
12

x y y z1
23

z

x y y

Figure 5: Circuit obtained after application of Scheme III.

adders/multipliers. This expanded graph is arranged in

levels and the levels are timed as described previously

so that all nodes on a given level start simultaneously.

Figure 5 shows the final circuit obtained after applying

Scheme III.

5.1 Delay and Cost

For the two-operand multiplier we use a radix-2 serial-

parallel multiplier and for the adder we use a carry-ripple

adder. A similar analysis is applicable to a radix-4 serial-

parallel multiplier using a Booth recoder. The multiplier

has an on-line delay of m cycles since only the most signif-

icant half of the product is used. The total delay is

TSPmult = (tmux + tFA + treg)m = 2.5m tFA

The additions are overlapped with the generation of the

MS half of the product with an on-line delay of one cycle.

A serial-multiplier has a cost

ASPmult = amux + a[3:2] + 2areg

= (0.5 + 1 + 1.2)m

= 2.7m aFA (14)

The cost of the adder is 2m aFA including the sum

register.

For the example E-graph, we would need ten two-

operand multipliers and four two-operand adders. Hence

the total area for Scheme III is:

A(SchemeIII) = (10 · 2.7m + 4 · 2m) aFA

= 35m aFA (15)

The expanded E-graph has five levels. Its delay is:

T (SchemeIII) = 5m cycles = 12.5m tFA (16)

Note that for this scheme(r = 2), 1 cycle = 2.5 tFA.

The values for r = 4 are obtained in a similar way.

6 Summary

The following table summarizes the delay and area re-

quirements for all the four schemes for m = 32. The MOLE

TABLE 2: DELAY/COST COMPARISIONS FOR THE VARIOUS
SCHEMES

Area Delay

MOLE 1763 205

Scheme I 1778 255

Scheme II 1778 220

Scheme III (r=2) 1120 400

Scheme III (r=4) 1440 280

scheme has lowest delay of all the schemes discussed.

To summarize, the MOLE scheme is a hardware-

oriented method to evaluate multinomials. Its advantage

is that it can adapt to any E-graph of the multinomial.

MOLE method is online and the output is available after

a few cycles. This can be used to chain it with other oper-

ations. MOLE method has favorable cost and delay prop-

erties. The implementation uses simple modules, whose

cycle time is independent of precision. The modules are

connected digit-serially with minimal interconnect. Sim-

ple area/time tradeoffs are also possible. A conventional

scheme (r=4) has a 18% smaller cost but a 36% longer

delay.

References

[1] P. Adharapurapu and M.D. Ercegovac, “A Linear-

System Operator based Scheme for Evaluation of

Multinomials”, Internal Report, Computer Science
Department, UCLA, June 2005.

[2] A. Darwiche, “A Differential Approach to Inference

in Bayesian Networks”, Journal of the ACM, vol. 50,

no. 3, pp. 280-305, May 2003.

[3] M.D. Ercegovac, “A General Hardware-Oriented

Method for Evaluation of Functions and Computa-

tions in a Digital Computer”, IEEE Transactions on
Computers, vol. C-26, no. 7, July 1977, pp. 667-680.

[4] M.D. Ercegovac, T. Lang, Digital Arithmetic, Morgan

Kaufmann, 2004.

1893

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on December 8, 2008 at 00:33 from IEEE Xplore. Restrictions apply.

