
Design and FPGA Implementation of Radix-10
Algorithm for Division with Limited Precision

Primitives
Miloš D. Ercegovac

Computer Science Department
Univ. of California at Los Angeles

California

Robert McIlhenny
Computer Science Department

California State University, Northridge,
California

Abstract— We present a radix-10 digit-recurrence algorithm
for division using limited-precision multipliers, adders, and table-
lookups. We describe the algorithm, a design, and its FPGA
implementation. The proposed scheme is implemented on the
Xilinx Virtex-5 FPGA device and we obtained the following
characteristics: for n = 7, delay is ≈ 105ns and the cost is 782
LUTs. For n = 14, the implementation has a delay of ≈ 197ns
and the cost of 1263 LUTs. The proposed scheme uses short
operators which may have an advantage at the layout level and
in power optimization.

INTRODUCTION

Several digit-recurrence schemes for decimal division have
been presented in recent papers [1], [7], [8], [9], intended for
ASIC implementations. In this paper we present a decimal
fixed-point division algorithm and design and implementation
with the Xilinx Virtex-5 FPGA device [11]. The main fea-
ture of the algorithm is its use of short-precision primitive
operators including adders, multipliers, and table-lookups. The
corresponding scheme is highly modular. The algorithm is of
the digit-recurrence type [4], that is, in each iteration, one
digit of the quotient is obtained based on the shifted residual.
The algorithm, proposed in [2], unlike a conventional digit-
recurrence division, is characterized by

1) Single digit residual,
2) Digit-by-digit use of the dividend like in online divi-

sion [4],
3) Quotient-digit selection by multiplying 2-digit divisor

reciprocal by a 3-digit auxiliary residual,
4) Update of the residual by a convolution of quotient and

divisor digits,
5) The final remainder is not produced; it can be obtained

in extra steps; the quotient can be rounded.
The scheme in many respects corresponds to the conven-

tional digit-recurrence division. It also has features of on-
line division [4] methods in which the digits of the dividend
and divisor are serially introduced to minimize the amount
of computation and input communication bandwidth. In the
proposed scheme, the digits of the dividend are used serially
to keep the precision of the residual short. The divisor digits
are used in parallel to have a short cycle time as discussed
later. In on-line algorithms the error in the residual due to the

incremental use of operands is compensated in each step by
adding a term missed in prior steps. Specifically, this term is
Q[j] · dj+δ . Here a different method of error compensation
is used. It is based on convolution which has been proposed
by Fourier [10] for very long division. We call the proposed
scheme F-division. The use of a short divisor to estimate the
quotient digit has also been used in division algorithms which
use redundant quotient digit set [5], [6]. The scheme is easily
extended to evaluate square roots which can be combined with
F-division [3].

I. OVERVIEW OF F-DIVISION METHOD

The dividend and the divisor are fixed-point numbers

x =
n−1∑
i=0

xi10−i, d =
n−1∑
i=0

di10−i (1)

where xi, di ∈ {0, . . . , 9}, and x < d ∈ [1, 2). As customary
to avoid quotient overflow, x is shifted right, its precision
extended by one digit and one extra iteration is performed.
For implementation efficiency, the operands’ digits are recoded
into the digit set {−5, . . . , 5}, prior to the operation. The
algorithm begins with a truncated dividend and a divisor, and
introduces one more digit of the dividend in each iteration.
The divisor is used in parallel to have a short cycle time as
discussed later. Here we choose two-digit initial dividend and
divisor

x∗ = 10x0 + x1 = x1 (2)

d∗ = 10d0 + d1 = 10 + d1 (short divisor) (3)

The quotient is q =
∑n
i=0 qi10−i, qi ∈ {−9, . . . , 9}. For

efficiency, the quotient digits are recoded internally as qj =
10qHj + qLj , qHj ∈ {−1, 0, 1} and qLj ∈ {−5, . . . , 5}. The
redundant quotient form can be converted to a conventional
representation using on-the-fly conversion.

The residual recurrence is similar to a recurrence used in
on-line division

w[j + 1] = 10w[j] + xj+1 − C[j]− qj+1d
∗

= v[j + 1]− qj+1d
∗ (4)

C[j] =
j∑
i=1

qidj+2−i (5)

A. Compensation by convolution

The term

C[j] =
j∑
i=1

qidj+2−i (6)

compensates for the error caused by the digit-serial handling
of the divisor. The computation of term C is a convolution of
the divisor and quotient digits, that is, a summation of digit
by digit products. For example, C[3] = q1d4 + q2d3 + q3d2.

The maximum absolute value of C[j] is

Cmax =
n−1∑
i=1

max(qj)×max(dk) ≤ 25(n− 1) (7)

This implies that the maximum precision of the compensation
factor C in radix-10 digits is

prec(Cmax) ≤ 3 (8)

for n ≤ 40. However, no precise bound has been found. The
experiments indicate that the worst case may not happen.

Figure 1 illustrates the compensation in F-division.

q1d2 q1d3 q1d4 q1d5

q2d2 q2d3 q2d4 q2d5

q3d2 q3d3 q3d4 q3d5

q4d2 q4d3 q4d4 q4d5

q5d2 q5d3 q5d4 q5d5

 Compensation in F-division (shaded boxes needed for full remainder):

a term consists of equal-weight digit-by-digit products

1

2

3

4

5

Step

Step

Step

Step

Step

Fig. 1. Compensation by convolution

II. DIVISION ALGORITHM

The proposed algorithm and an example are given next.

1. [Initialize]
v[1] = 10x0 + x1 = x1; d∗ = 10d0 + d1 = 10 + d1

g ← TREC(d∗)
q1 = SEL(v[1], g)
w[1]← v[1]− q1d

∗; C[1]← q1d2

2. [Recurrence]
for j = 1 . . . n

v[j + 1] = 10w[j] + xj+1 − C[j]
qj+1 = SEL(v[j + 1], g)
w[j + 1]← v[j + 1]− qj+1d

∗

C[j + 1]←
∑j+1
i=1 qidj+3−i;

Q[j + 1]← OFC(Q[j], qj+1)

j xj+1 v[j + 1] qj+1 w[j + 1] C[j + 1] Q[j + 1]

0 7 7 0 7 0 0
1 1 71 5 1 5 0.5
2 9 14 1 0 46 0.51
3 0 -46 -3 -4 16 0.507
4 5 -51 -4 5 16 0.5066
5 1 35 2 7 -6 0.50662
6 7 83 6 -1 9 0.506626
7 8 -11 -1 3 39 0.5066259
8 0 -9 -1 5 -3 0.50662589
9 0 53 4 -3 27 0.506625894

10 0 -57

III. DESIGN AND IMPLEMENTATION

We discuss a sequential implementation of the proposed
algorithm. We give the delay of the critical path, the total
execution time, and the cost obtained from implementing the
scheme on the Xilinx Virtex-5 FPGA device for n = 7
(single precision significand) and n = 14 (double precision).
A block-diagram of digit-recurrence implementation is shown
in Figure 2.

We now discuss the main modules of this implementation.
The quotient-digit selection function uses a short 2-digit

reciprocal g = 1/d∗ = 1/(10 + d1) = (1, g2, g3), obtained
from a table. The quotient digit qj is then obtained as the
integer part of the rounded product v[j]× g:

qj = SEL(v[j], g) = sign(v[j]) · int(|v[j] · g|+ 0.5) (9)

It produces qj ∈ {−9, . . . , 9} which is recoded for efficient
multiplier implementation to the digit set {−5, . . . , 5}.

Short Reciprocal Lookup Table

The table TREC containing short reciprocals of the divisor
produces the output

g(d0, d1) = 10−3int(103/(10d0 + d1)) =
∑3
i=1 gi10−i

Because d0 = 1 and d1 ∈ {0, . . . , 9} the lookup table
has 10 entries, each entry having 3 digits recoded to the set

xj+1
C[j]

10w[j]

v[j+1]

SEL

TREC V-net

d1

qj+1

w[j]

W-net

d*=10+d1

W-REG

OFC

Q

C-net

qj+1 d(2,...,n-1)

w[j+1]

2x4

4 4+sign 4

g
n-2

C[j+1]

3x4+sign

2x4+sign

(qj+1 in {-9,...,9}, recoded into

{-1,0,1} and {-5,...,5})

4+sign

4+sign

4+sign

4+sign

4n+sign

Fig. 2. Digit-recurrence implementation of decimal divider.

{−5, . . . , 5}. Because g1 = 1, it is not stored and the width
of the able is 4 + 4 bits (2 decimal digits)

Selection function

Note that |v ∗ g| + 0.5 < 10 ⇒ |v|max < 9.5/0.052 <
193. Therefore, |v| = |

∑0
i=2 vi10i|, v1 = 0 or 1. The partial

product matrix for v∗g+(−1)sign(v)0.5 is shown below where
the signed ”5” in the last row performs the rounding.

v2 v1 v0

v2g2 v1g2 v0g2

v2g3 v1g3 v0g3

(−1)sign(v)5
qa qb

qi

All input digits in the matrix are in the set {-5,....,5}.
The quotient digit qi = 10qa + qb ∈ {−9, . . . , 9}. This is
implemented with digit-by-digit multipliers and multi-operand
signed-digit adders of the type [6:2], [4:2], and [3:2].

Digit-by-digit Multiplier

A digit-by-digit multiplier uses absolute values of the
operands and adjusts the sign of the product accordingly.

TABLE I
TREC TABLE LOOKUP

d1 rec g1 g2 g3

0 0.1 1 0 0
1 0.09 1 -1 0
2 0.083 1 -2 3
3 0.076 1 -2 -4
4 0.071 1 -3 1
5 0.066 1 -3 -4
6 0.062 1 -4 2
7 0.058 1 -4 -2
8 0.055 1 -4 -5
9 0.052 1 -5 2

ABS ABS

MULT

NEG NEG

ai bj

si+jci+j-1

{-5,...,5}

{-5,...,5}{-2,...,2}

{-5,...,5}

Fig. 3. Digit-by-digit multiplier

The digit-by-digit multipliers are used in the selection
function and the network for computing the compensation
factor.

C-Net for Compensation

To have a short cycle, we evaluate the compensation factor
C[j] =

∑j
i=1 qidj+2−i recursively in j cycles. For example,

C[4] = q4d2 + (q3d3 + (q2d4 + q1d5))

is computed in cycles 1,2,3, and 4 by doing a digit-by-digit
multiplication and accumulation.

The recursive computation is defined by the following
expression

TABLE II
DIGIT-BY-DIGIT MULTIPLICATION TABLE

|xi|, |yj | 1 2 3 4 5
1 0,1 0,2 0,3 0,4 0,5
2 0,2 0,4 1,-4 1,-2 1,0
3 0,3 1,-4 1,-1 1,2 1,5
4 0,4 1,-2 1,2 2,-4 2,0
5 0,5 1,0 1,5 2,0 2,5

ci+j−1, si,j

d2 d3 d4qj+1

dm-1
4

[5:2] ADDER

C[j+1]
- registers

[5:2] ADDER [5:2] ADDER [3:2] ADDER

4

2x4+sign

MultH
MultL

MultH
MultL

MultH
MultL

MultH
MultL

4
REC

{-5,...,5}

{-1,0,1}

{-9,...,9}

9

{-5,...,5}

Fig. 4. Implementation of C-net

A[j, k] = qjd2+k−j + A[j − 1, k]

j = 1, . . . , n− 1, k = j, j + 1, . . . , n− 1, and A[0, k] = 0.
At iteration j, the value of the compensation factor is C[j] =

A[j, j].
To simplify the digit-by-digit multiplications, the selected

quotient digit qj+1 ∈ {−9, . . . , 9} is recoded as 10qH + qL,
resulting in high and low multiplier digits qH ∈ {−1, 0, 1}
and qL ∈ {−5, . . . , 5}. Now we perform digit-by-digit multi-
plication qj+1 × dj ∈ {−5, . . . , 5} as

10qH ∗ dk + qL ∗ dk = (cH , sH , cL, sL)

producing the product in carry-save form.
The high and low digit multipliers operate in parallel:
• MultH: {−5,, 5}×{−1, 0, 1} trivially produces : −dj ,

0, or dj
• MultL : digit-by-digit multiplier with operand digits in
{-5,....,5}.

In each digit slice of the compensation network we add:
• Output of MultH: −dj , 0, or dj ;
• Output of MultL: cj , sj (carry from the previous slice);
• Previous 2 decimal digits of A[j − 1, k].

Note that all signal connections are local except for the
transmission of qH and qL.

V-Net (Auxiliary residual)

The V-Net computes the auxiliary residual

v[j + 1] = 10W [j] + xj+1 − C[j] (10)

with the inputs:
• Shifted residual: 10w[j], consisting of a single signed

decimal digit (shifted left).
• A dividend digit xj+1 ∈ {0, . . . , 9}.
• The compensation factor C[j] - redundant (carry,sum) as

produced by the [5:2] and [3:2] adders in the C-net. It
consists of 2 decimal digits and a sign.

• The output is v[j + 1] = (v2, v1, v0).
Since the output precision is 3 decimal digits, this is done fast.

W-Net (Next residual)

This module computes next residual

w[j + 1] = v[j + 1]− qj+1(10 + d1)

The auxiliary residual v[j + 1] has 3 decimal digits (leading
digit 0 or 1); it is in a nonredundant form. Multiplication
qj+1(10 + d1) is performed asas qj+1 × d1 + 10qj+1. The
output is the next residual w[j + 1], consisting of a single
signed decimal digit.

Quotient conversion

The computed signed-digit quotient has to be converted to
conventional representation. This can be done with the on-
the-fly conversion (OFC) algorithm [4] in parallel with the
computation of quotient. To avoid propagation of carries, two
forms Q and QM are maintained such that at every iteration
the following condition holds: QM [j] = Q[j] − 10−j . The
two forms are updated as follows

Q[j +1] =

{
(Q[j], qj+1) if qj+1 ≥ 0
(QM [j], (10− |qj+1|)) if qj+1 < 0

(11)

QM [j + 1] =

{
(Q[j], qj+1 − 1) if qj+1 > 0
(QM [j], ((9− |qj+1|)) if qj+1 ≤ 0

(12)
with the initial conditions Q[0] = QM [0] = 0 (for a positive
quotient). Note that concatenations are used to update the
forms. At step j, Q[j] corresponds to the j-digit conventional
representation of the quotient. Consequently, after the last
iteration, Q[n + 1] represents the quotient in the conventional
form. One extra iteration is due to the initial right shift of the
dividend, needed to avoid the quotient overflow. Note that the
OFC is not in the critical path.

IV. FPGA IMPLEMENTATION

The radix-10 divider was designed, implemented, synthe-
sized, and tested using the Xilinx Foundation Design Suite
10.1 tool [11] and mapped onto a Xilinx Virtex 5 xc5vlx50-
2ff324 FPGA. The cost was measured in terms of 4-input
look-up-tables (LUTs) and delay was measured for individual
components, as well as for the entire design in nanoseconds
(ns). Optimization of the layout was not performed. As a
consequence, the routing delays are very large.

The delay of the routing network produced by the synthesis
tool is

Troute = trV−net + trSel + trW−reg

= 1.795 + 4.395 + 3.765 + 0.91
= 10.865ns

The delay through the logic of the synthesized divider is

Tlogic = tV−net + tSel + tC−net + tW−reg

= 0.471 + 0.688 + 0.688 + 0.396
= 2.243ns

TABLE III
IMPLEMENTATION CHARACTERISTICS

Module LUTs LUTs Delay* Period
n = 7 n = 14 [ns] [ns]

TRec 8 8 3.904 n/a
Sel 96 96 11.659 n/a

C − net 313 684 – 3.835
V − net 35 35 7.481 n/a
W − net 63 63 13.812 n/a

OFC 62 115 – 1.086
Routing 205 262 – n/a

Divider 782 1263 – 13.108

* Delay of combinational modules implemented individually.

Since W-net is not part of the critical path, we included the
individual cost and delay for it. For the actual design, the delay
starts from outputing w[j] from the W-reg and then inputing
it into V-net, since the delay goes from one clocked output to
the next. Note that V-net, W-net, Reciprocal and Selection are
not clocked. Therefore, the period is determined by the path
going from W-reg to C-net. These are the only two modules
that are clocked.

V. SUMMARY

We presented a decimal division scheme which uses mod-
ules of short precision – 1 to 3 decimal digits. The algorithm
and its implementations are described for specific choices
of the initial dividend and divisor precision. The proposed
scheme is implemented on the Xilinx Virtex-5 FPGA device
and we obtained the following characteristics: for n = 7, delay
is (7 + 1) × 13.108 ≈ 105ns and the cost is 782 LUTs. For
n = 14, the implementation has a delay of (14+1)×13.108 ≈
197ns and the cost of 1263 LUTs. The proposed scheme
uses short multipliers which may have an advantage at the
layout level. The delay of routing in the layout produced by
the synthesis tool is very large compared to logic delays:
we expect that routing delays can be significantly reduced
by controlling the layout process. This is the primary goal
of future work. Future work includes FPGA implementation
of a combined scheme for decimal division and square root.
Another extension is developing a floating-point version. We
also plan a more comprehensive comparisons with other design
approaches.

REFERENCES

[1] F.Y. Busaba, C.Y. Krygowski, W.H. Li, E.M. Schwarz, and S.R. Car-
lough, “The IBM z900 Decimal Arithmetic Unit”, Proc. 35th Asilomar
Conference on Signals, Systems and Computers, pp. 1335-1339, 2001.

[2] M.D. Ercegovac and T. Lang, Division with Limited Precision Primitive
Operations. Proc. 35th Asilomar Conference on Signals, Systems and
Computers, pp. 841-845, 2001.

[3] M.D. Ercegovac and J.-M. Muller, Digit-recurrence algorithms for
division and square root with limited precision primitives. Proc. 37th
Asilomar Conference on Signals, Systems and Computers, pp. 1440-
1444, 2003.

[4] M.D. Ercegovac, T. Lang, Digital Arithmetic, San Francisco, Morgan
Kaufmann, 2004.

[5] D.E. Atkins, “Higher-radix division using estimates of the divisor
and partial remainders.” IEEE Trans. Computers, Vol.C-17(10):925-934,
October 1968.

[6] M.D. Ercegovac and T. Lang. Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Norwell, MA: Kluwer
Academic Publishers, pps. 230, 1994.

[7] T. Lang and A. Nannarelli, “A Radix-10 Digit-Recurrence Division Unit:
Algorithm and Architecture”, IEEE Trans. Comput., 56(6):727-739, June
2007.

[8] T. Lang and A. Nannarelli, “Combined Radix-10 and Radix-16 Divi-
sion Unit”, Proc. 41-st Asilomar Conference on Signals, Systems and
Computers, pp. 967-971, 2007.

[9] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fats Decimal Floating-Point
Division”, IEEE Trans. VLSI., 14(9):951-961, September 2006.

[10] J.V. Uspensky, Theory of Equations, McGraw-Hill, 1948.
[11] Xilinx Corporation. Xilinx ISE Foundation Design Suite 10.1. 2008.

