
On Digit-by-Digit Methods for Computing Certain
Functions

Milo-s D. Ercegovac
Computer Science Department

Univ. of California at Los Angeles

Abstract- A digit-by-digit arithmetic method in computing
certain functions, such as cube roots, suitable for FPGA tech-
nologies, is presented. In the radix-2 case, this method uses only
simple primitive operations such as carry-propagate addition/-
subtraction, doubling, and halving. Details of the radix-2 method
applied to computing cube root and its square are discussed.
Rough estimates of delay and cost are given.

INTRODUCTION

The scope of current and forthcoming technologies is en-
larging. Besides semi- and full-custom VLSI, reconfigurable
ICs, based on the concept of field-programmable gate arrays
(FPGA), are becoming suitable for digital system design
and implementation when the expected volume and life time
are limited. However, FPGA technology has constraints and
characteristics different from other VLSI integrated circuits.
For these reasons it may be profitable to revisit approaches
to design of arithmetic schemes. In this paper we consider
a class of algorithms which might be suitable for FPGA
implementations. We discuss a digit-by-digit method, in which
operands and/or results are processed digit-at-a-time. These
have been used often when simplicity is needed in interconnec-
tions and in arithmetic circuits while increases in latency, due
to serial processing, are acceptable [4]. These characteristics
were common in the early days of computer design and it may
be instructive to look at some of the early approaches to imple-
menting arithmetic operations. Specifically, we revisit rather
old ideas for computing inverses of certain functions [8], [12]
and adapt them for implementation using field-programmable
gate arrays. As mentioned above, this technology has different
constraints and features than custom VLSI. A most relevant
difference is in implementing adders. While fast adders in
custom VLSI use sophisticated schemes such as parallel prefix
adders, in an FPGA a basic carry-ripple adder is often prefer-
able because of the built-in carry paths between neighboring
configurable blocks and compact mapping. These dedicated
carry paths have much shorter delay than the general routing
channels which would be used in implementing more elaborate
adders. Consequently, many of the adder schemes developed
for custom VLSI do not map well to FPGAs. In particular,
redundant adders may not be attractive in terms of delays and
area compared to simple carry-propagate adders such as the
carry-ripple adder which has built-in support on FPGAs. On
the other hand, FPGA lookup table (LUT) logic blocks allow
efficient implementation of multi-operand reduction which can
be combined with fast carry-ripple adder to implement, for

example [3:1] adders. In general, as long as reductions, such
as [3;2] (carry-save), are confined to internal logic and avoid
global interconnect, their use is advantageous. An example
of such a design is supported by the Altera's adaptive logic
module (ALM) which consists of 4 3-input LUTs performing
a carry-save reduction of 3 to 2 operands and a 2-bit CRA
with a fast carry propagation chain [1]. Thus, the ALMs
implement efficiently a [3:1] adder. Suggestions for improving
carry-propagation schemes in FPGAs have been studied in [5].
Early approaches for implementing arithmetic operations and
evaluation of functions often utilized digit-by-digit methods.
Examples of well-known methods of this type are digit-
recurrence division and square root [2], CORDIC [11], mul-
tiplicative and additive normalization methods for logarithms
and exponentials, and online arithmetic [3]. These early arith-
metic approaches used conventional (nonredundant) arithmetic
and were not attractive in custom VLSI. However, these
approaches may be of interest because modern technologies
such as FPGAs may favor conventional representations.

I. OVERVIEW OF THE METHOD

Folowing Morrison [8] and Wensley [12], consider comput-
ing the inverse of a function f (x) = y satisfying the following
properties:

1) f(x) = y is non-decreasing in the interval where we
want to obtain the inverse x = f-(y)

2) f (x) is additive, i.e., f (a + b) = G(f (a), b)
For the conventional radix-2 system the partially computed
result at iteration i, containing i digits, is represented as

x[i] = xj2-j, xi C {O, 1}
j=l

(1)

If x[i] < x < x[i] + 2-i then the following holds because
f (x) is a non-decreasing function:

1) x[i] < x < x[i] + 2-(i±+) if f(x[i] + 2-(i±+)) > y
2) x[i] + 2-(i±+) < x < (x[i] + 2-(i±+)) + 2-(i±+) if

f (x[i] + 2-(i±+)) < y
Calculation of fnext = f(x[i] + 2-(i±+)), given f(x[i]), uses
function G, which, hopefully, is simpler than using f (x)
directly to compute fnext. The next result digit is determined
so that the error Cnext = Y-fnext satisfies a desired condition.
A simple condition is to keep the error nonnegative. This
is a well-known condition used in restoring (nonperforming)
division.

978-1-4244-2110-7/08/$25.00 C2007 IEEE 338

A general algorithm for radix-2 system with xj C {0, 1} is
for j = 0,...,m Ido

1. fnext f(x[j] + 2-(j+l)) = G(f(x[j], 2-(j+l))
2. e[j + y fnext
3. x[j +1= (x[j, (e[j + 1] > 0) x 2 -(j+))

so that x[m]) f-(y) as m)co.
The main objective in developing an algorithm suitable for

hardware implementation is to find simple ways to carry out
Step 1. One simple solution is to decompose G into several
functions which are simpler to implement than f(x). In the
next section we illustrate the algorithm development using an
example - computing a cube root and its square.

II. COMPUTING CUBE ROOT AND CUBE ROOT SQUARE
Digit-recurrence algorithms for computing cube roots have

been considered frequently in the literature. Examples of work
include [9], [7], [6]. Typical for the approaches proposed is the
use of redundant result digit sets and residuals in redundant
form to simplify the result digit selection and reduce the time
per iteration. These improvements come at the cost of extra
hardware compared with methods not using redundancy.
As indicated earlier, in this paper we focus on the algorithms

based on conventional (nonredundant) systems - specificaly
radix-2 [12]. Let f(x) = x3 = y, 0 < y < 1, and compute
x = y1/3. The result is

m

x Z= xi2-, xjCf0,1}
i=O

At step j, we want to compute x[j + 1] = x[j] +
xj+12 (j+1) = (x[j],xj+±). Let di = 2- and the error
(residual)

e[j] = y -[j] (2)

The next result digit xj+l is selected so that e[j + 1] > 0, i.e.,
xj+= (e[jl 1] > 0).
A suitable expression for the error can be obtained as

follows. Compute the error for xj+l = 1

y -(x[j] + dj+±) y -(x[j]) -3(x[j])2dj+±
-3x[j]dX2+i- d3+

Divide (3) by dj+l and define the terms that define
corresponding scaled residual expression as

a[j] = (y- (x[j])3)Idj+l
b[j] (X[j])2

c[j] x[j]dj+
pj d2j+ 1

Now the scaled residual w[j + 1] is expressed as

w[j + 1] = a[j] -3b[j] -3c[j] -pj

The corresponding recurrences are obtained from definitions
by considering the possible values of the next result digit xj+x.
For a [j] = (y-(x [j])3) /dj+ I we get the following recurrence:

a[j + 1] = (y- (x[j + 1])3)/dj+2
= (Y-(x[j] + xj+ldj+±)3)Idj+2
= 2(a[j]- xj+l (3b[j] + 3c[j] + pj))

For b[j] =

b[j + 1]

For c[j]

(x[j])2 the recurrence is:

(X[j +1])2
(X[j] + Xj+ldj+1)2
(X[j])2 + 2x[j]xj+ldj+l + (Xj+1)2(dj+)2
b[j] + xj+l(2c[j] + xj+lPj)

x[j]dj+ the recurrence is:

c[j + 1] (x[j + 1])dj+2
(x[j] + xj+ldj+±)dj+112
I2 (X[j]dj+i H-j+, (dj+1)2)

= 2(c[j] + xj+lPj)
These recurrences use additions, subtractions, left and right
shifts by one or two positions, and powers of 2. The range of
the terms are: 0 < a[j] < 6, 0 < b[j] < 1, and 0 < c[j] <
2-(j+1). The range of the scaled residual is -3 < w[j] < 3.

In the radix-2 case, we compute tentative scaled residual for
Xj+1 = 1

w[j + 1] = a[j] -3b[j] -3c[j] -pj

and then use its sign to select the result digit xj+

f 1 if w[j+l1]>0
XJj4 ' 0 otherwise

This is equivalent to computing a tentative remainder in
digit-recurrence division and, based on the sign, updating the
next remainder and the quotient. The difference in this case
is that the next residual is not computed directly from the
tentative residual. The algorithm for radix-2 cube root and its
square is summarized next.

1. Intialization: a[O] = 2y; b[O] = 0; c[O] = 0; do 1;
Po =; x[0]= 0

2. Forj =0,...,m -Ido
2.1 w[j + 1] = a[j] -3(b[j] + c[j]) -pj
2.2 if w[j + 1] > 0 then

a[j + 1] = 2w[j + 1]
b[j + 1] = b[j] + 2c[j] +pj
c[j+1] = 2 (c[j] + pj)
X[j+ 1] = (x[j],1)

2.3 else

(4)

Instead of computing the next residual using the current
residual, the terms a[j + 1], b[j + 1], c[j + 1], and Pj+l are
computed separately and combined to form the next residual.

a[j + 1] =
b[j + 1] =
c[j + 1] =
x[j + 1] =

2.4 pj+I = 1pj; dj+2

2a [ji
b[j]
1c[j]
(x[j], 0)
= 2dj+

339

0 00.0 0 0.0 01.1 0.0
1 01.01 1 0.1 10.1 0.01
2 01.0101 1 0.11 10.101 0.1001
3 00.101001 1 0.111 01.01001 0.110001
4 -01.00101111 0 0.111 10.1001 0.1101001001
5 00.0010111011 1 0.11101 00.010111011 0.1101001001
6 -10.001001000011 0 0.11101 00.10111011 0.1101001001
7 -01.110000010011 0 0.11101 01.0111011 0.1101001001
8 -01.000000111 0 0.11101 10.111011 0.1101001001
9 00.01110011111 1 0.111010001 00.11100111110 0.110100110011
10 -01.10010010011 0 0.111010001 01.110011111001 0.110100110011
11 -00.1010101001 0 0.111010001 11.10011111001 0.11010011001
12 01.001001011 1 0.111010001001 10.01001011 0.1101001101

Fig. 1. Example of cube root computation. The argument y = 0.75 and the result x = y1/3 = 0.9085 = 0.111010001001 truncated to 12 fractional
places. The computed result is x[12] = 0.111010001001 with an error of less than one ulp. We also obtain z = x2 =y2/3 = 0.110100110101 computed
as b[12] = 0.110100110100.

3. Outputs: x - x[m]; 92 - b[m]
An example is shown in Figure 1. Note that b[rn] -_ y2/3.
The algorithm uses simple operations: left/right shifts,

addition and subtraction. The overall scheme consists four
modules: Module 1, shown in Figure 2, produces w's, the
result digit xj+i, and a's.

b

An alternative implementation of Module 1 using a [3:1] adder
is illustrated in Figure 3.

Module]
b Stepj

c

Stepj

-a

-w =-a + 3(b+c) + p anext = 2a or 2w

Fig. 3. Alternative implementation for Module 1.

-a

-w =-a+ 3(b+c) + p anext = 2a or 2w

Fig. 2. Implementation scheme for cube root: Module 1.

To simplify the implementation we compute a negative of
the residual w[j+1], i.e., -w[j+] =-a[j]+pj+3(b[j]+c[j])
and keep a[j] in the negative form, thus avoiding subtraction.
The term -a[j + 1] =-2a[j] or -a[j + 1] -2w[j + 1],
depending on the sign. The output digit xj+l 1 if the sign
s < U and O otherwise. So, the register Reg-A is loaded with
-2w[j + 1] if xj+l = 1 and shifted otherwise. The Append
operation adds a 1(pj = 2 -2(j+l)) in even positions. The
output of this operator is shared among modules using Pj+1.

Modules 2 and 3, shown in Figure 4, produce terms b[j + 11
and c[j + 1] and store them in the corresponding registers in
a similar manner as discussed for Module 1. Module 4 is a
shift register which updates the result x[j + 1] = (x[j], xj+l)
using concatenation. The results are obtained in a conventional
representation.
The CPA adders and INC incrementers in Figure ?? propa-

gate carries in an overlapped manner so that the total latency
is roughly the latency of a single CPA (INC) module. The
cycle time is estimated as

Tcycle - (m + 3)tcarry + 3tFA + tREG

The cost is estimated using the area of a full adder AF

340

w[j + 1] x[j + 1] a[j + 1] b[j + 1]i Xj+l

outputs. The following are the expressions for the conditional
terms:

a°° [j + 2]
boo [j + 2]
COO [j + 2]

Xj+]

b

bnext = b+2c +p or b cnext (c+p)/2 or c/2

Fig. 4. Implementation scheme for cube root: Modules 2 and 3.

ao0[j -+ 2]
bo0 [j + 2]
c01[j -+ 2]

a1o[j -+ 2]
b1o[j -+ 2]
c10[j + 2]

= 4a[j]
= b[j]
= c[j]2 -2

2w° [j + 2]

b[j] + c[j] + pj+i
c[j]2-2 +pj2-3

= 4w[j + 1]
= b[j]
= c[j]2 -2

C - (7m + 1O)AFA

Further optimizations include shared CPA/INC modules to
reduce the cost at an increased cycle time. To reduce latency
other types of conventional adders, such as carry-skip and
carry-select adders, could be considered, as discussed in [13],
[5]. Another possibility is a scheme with overlapped stages
outlined in the next section.

III. OVERLAPPED STAGES: 2 BITS/PER CYCLE

Two result bits xj+l and Xj+2 can be obtained per cycle
by using two overlapped stages [10], [2], a scheme used in
speeding up digit-recurrence division. An overall scheme of
this alternative in implementing cube root scheme is shown in
Figure 5.
The inputs to the combined stages are a[j], b[j], c[j], and

the iteration index j. The block BI computes w[j -+ 1] =

a[j]- 3(b[j] + c[j]) -pj and outputs the result digit xj+x.
In parallel blocks B2 and B3 produce two conditional next
residuals wo[j + 1] and w1[j + 2] for xj+ = 0 and xj+ =

1, respectively. The tentative residuals are used to determine
tentative values of the next result digit x°2 and x+2. The

tentative residuals are

w° [j + 2]
w1[j + 2]

2a[j]- 3(b[j] + c[j]2 1) -Pj+
2w[j + 1] -3(b[j] + 2c[j] +pj) -Pj+l

Block B4 computes the tentative values of a[j 2], b[j 2],

and c[j + 2] as:

(a°°[j -+ 2], ao1[j -+ 2], a10[j + 2], a" [j + 2])

(boo[j + 2], bo1[j + 2], bl0[j + 2], bl1[j + 2])

(cOO[j + 2],c01[j + 2],c10[j + 2],c" [j+ 2])

The values of the result digit pair (Xj+l, Xj+2) determine
which of these conditional terms are selected as the stage

all [j + 2]
b1l [j + 2]
c1l [j + 2]

2w° [j + 2]
b[j] + 2c[j] + Pj

(c[j] +pj)2-2

The conditional forms of the terms a, b, and c are computed
with shifts which are done via wiring and additions which
depend on the stage inputs so Block 4 is not in the critical path.
The delay of Blocks 1, 2 and 3 is roughly equivalent to the
delay of radix-2 stage (less the register delay. Therefore, the
overlapped stage delay is roughly the delay of a single stage
plus the delay of a 4-to-I selector and the delay of registers for
a, b, and c terms. We ignore the implementation of p terms. In
conclusion, two bits are computed per iteration with a delay of
a single stage discussed above. However, there is an increase
in the cost of this implementation: we estimate that it would
take about five times as much hardware as the one bit per
stage implementation.

IV. SUMMARY

We have reviewed and expanded on a simple approach
to digit-by-digit methods, originally proposed by Morrison
and Wensley in the 50s. This approach is of interest when
conventional adders are "best" as is often the case in cur-

rent FPGA technologies. The method is applicable to other
functions such square root, division, logarithm, exponential,
arctangent, arcsin, and similar. The method has been illus-
trated in computing the cube root and its square in radix-
2 conventional representation without use of redundancy. A
2-bit per iteration alternative has been discussed. Estimates
of delays and cost are given. No synthesis has been done
so the performance results are rough estimates. It may be
useful to consider extensions to higher radices with redundant
digit sets to allow simple comparison constants while still
employing carry-propagate adders as used in the SRT division
with nonredundant residuals [3].

341

Module 2
b 2c

Module 3

aft] bfj] cfj]

XjO+2 IFXj+2 +
oE | Block B4 l

(x4) |(x4) |(x4) | conditional
t t ~~tetrms a, b, and c

Xj+I Xj+2 a[j+2] bfj+2] cj+2]

Fig. 5. Scheme with two overlapped stages.

REFERENCES

[1] Altera Corporation. Stratix III Device Handbook, Volume 1. October
2007.

[2] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-
Recurrence Algorithms and Implementations. Kluwer Academic Pub-
lishers, Boston, MA, 1994.

[3] M.D. Ercegovac, T. Lang, Digital Arithmetic, San Francisco, Morgan
Kaufmann, 2004.

[4] R. Hartley and K. Parhi. Digit-Serial Computation. Springer, 1995.
[5] S. Hauck, M.M. Hosler, and T. W. Fry. High-Performance Carry Chains

for FPGAOs. IEEE Trans. On Very Large Scale Integration (VLSI)
Systems, 8(2):138-147, April 2000.

[6] P. Montuschi, J. D. Bruguera, L. Ciminiera, J-A. Pineiro. A Digit-
by-Digit Algorithm for mth Root Extraction. IEEE Trans. Computers,
56(12):1696-1706, December 2007.

[7] J.A. Pineiro, J.D. Bruguera, L. Ciminiera, P. Montuschi.
A Digit-by-Digit Algorithm for Radix-2 Cube Root
and Its Implementation. Technical Report, May 2004,
http://www.ac.usc.es/arquivos/articulos/2004/gac2004-iOl.pdf.

[8] D.R. Morrison. A Method for Computing Certain Inverse Functions.
MTAC, Vol. 10, No. 56, pp. 202-208.

[9] N. Takagi. A Digit-Recurrence Algorithm for Cube Rooting. EICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences. Vol.E84-A, No.5, pp.1309-1314, 2001.

[10] G.S. Taylor. Radix-16 SRT Dividers with Ovelapped Quotient-Digit
Stages. Proc. 7th IEEE Symposium on Computer Arithmetic, pp. 64-
71, 1985.

[11] J. S. Walther. A unified algorithm for elementary functions. In Joint
Computer Conference Proceedings, pages 379-387, 1971. Reprinted
in E. E. Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer
Society Press, Los Alamitos, CA,1990.

[12] J. H. Wensley. A Class of Non-Analytical Iterative Processes. The
Computer Journal, Vol. 2, pp. 163-167, 1959.

[13] S. Xing and W.W.H. Yu. FPGA Adders: Performance Evaluation and
Optimal Design. IEEE Design & Test Of Computers, pp.24-29, Jan-
March 1998.

342

