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Abstract. A high-radix digit-recurrence algorithm for the computation of the logarithm, and an analysis of the
tradeoffs between area and speed for its implementation, are presented in this paper. Selection by rounding is used
in iterations j ≥ 2, and by table look-up in the first iteration. A sequential architecture is proposed, and estimates
of the execution time and hardware requirements are obtained for n = 16, 24, 32, 53 and 64 bits of precision and
for radix values from r = 8 to r = 1024. These estimates are obtained according to an approximate model for the
delay and area of the main logic blocks. We show that the most efficient implementations are obtained for radices
ranging from r = 32 to r = 256, reducing the execution time by half with respect to a radix-4 implementation with
redundant arithmetic.
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1. Introduction

Logarithms belong to a type of mathematical func-
tions known as elementary functions, and are important
for a wide range of applications such as engineering,
physics, computational chemistry, logarithmic number
systems (LNS), or signal processing [1, 2]. Other el-
ementary functions are square root, reciprocal square
root, exponentials and trigonometric functions, all of
them employed in scientific computations, DSP and
3D-graphics applications [3–5].

Software routines have been used to evaluate el-
ementary functions with techniques such as polyno-
mial and rational approximations [6–8] and contin-
ued fraction expansion [9]. However, although these
routines provide very accurate results, they are of-

ten too slow for numerically intensive and real-time
applications.

Hardware-based methods have been developed
as an alternative to the software routines, providing
high-speed solutions implemented in dedicated
hardware. Low-degree polynomial approximations
combined with table look-up [10, 11], functional
iteration methods [4, 12, 13] and digit-recurrence
algorithms [14, 15] are examples of these methods.

Digit-recurrence algorithms are an interesting alter-
native due to their low area requirements, especially
for high-precision computations, when compared
with table-based and functional iteration methods.
Their main drawback is a linear convergence of one
radix-r digit per step, resulting in long execution times
for small radices and high precision. Two factors
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determine the execution time: the cycle time of the
recurrence and the latency of the algorithm. The cycle
time can be reduced by using redundant arithmetic,
and the latency can be reduced by a factor of b by em-
ploying radix r = 2b. However, these improvements
lead to an increase in the cost of implementation and,
in particular, the complexity of the selection function
for the digits. The only practical method for selection
when a high radix is used is selection by rounding [3,
16]. Two alternatives have been used to allow selection
by rounding: performing a scaling of the recur-
rence [16, 17] and performing selection by table in the
first iterations until the convergence conditions are met
[3].

High-radix digit-recurrence methods have been pro-
posed for the computation of division, square root,
reciprocal square root, exponential and trigonometric
functions [3, 16–19]. In this paper we give a detailed
description of the high-radix algorithm for the compu-
tation of the logarithm, with selection by rounding and
redundant arithmetic [20]. An abbreviated version was
presented in [21]. Convergence conditions limit the use
of selection by rounding to iterations j ≥ 2, with a re-
dundant digit set |e j | ≤ (r − 1). The selection of e1 is
performed by table look-up. This table is addressed by
the b + 1 most significant bits of the input operand X .

The overall hardware requirements in the high-radix
algorithms increase with the radix, and an analysis of
the tradeoffs between area and speed is necessary for
determining the values of the radix r which result in
efficient implementations. We perform such an anal-
ysis in this paper, extended from the one presented
in [22], for a sequential architecture implementing the
proposed high-radix algorithm for logarithm computa-
tion. Some optimizations in the architecture are made
in this paper, in order to reduce the delay of the critical
path and therefore the overall execution time, increas-
ing the achieved speed-ups regarding low-radix imple-
mentations. The analysis performed is based on esti-
mates obtained for precisions n = 16, 24, 32, 53 and
64-bits and for radix values from r = 8 to r = 1024,
according to an approximate model for the delay and
area cost of the main logic blocks employed in the pro-
posed architecture.

The algorithm for logarithm computation is ex-
plained in Section 2, detailing the conditions for selec-
tion by rounding. In Section 3, the optimized sequential
architecture implementing our algorithm is proposed.
The model for the delay and area of the main com-
ponents of the architecture is presented in Section 4,

together with estimates of the execution time and area
requirements for several precisions and radix values. A
comparison of our algorithm with a conventional radix-
4 redundant implementation is presented in Section 5.
Finally, the main contributions made in this paper are
summarized in Section 6.

2. Algorithm

The algorithm is based on the identity

ln(X ) = ln
(

X
∏

f j

)
−

∑
ln( f j ) (1)

which has been frequently used in the literature [14,
23–26].

If the following condition is satisfied:

X
∏

f j → 1 (2)

then

Y −
∑

ln( f j ) → Y + ln(X ) (3)

The condition (2) can be achieved using a multi-
plicative normalization which consists of determining
a sequence f j such that X is transformed to 1 by succes-
sive multiplications. To simplify the multiplications, it
is convenient to define the constants as f j = 1+e jr− j ,
where r = 2b is the radix, and e j is a radix-r digit. This
form of f j allows the use of a shift-and-add implemen-
tation. The corresponding recurrences for transforming
X and computing the logarithm are

E[ j + 1] = E[ j](1 + e jr
− j )

L[ j + 1] = L[ j] − ln(1 + e jr
− j ) (4)

with j ≥ 1, E[1] = X and L[1] = Y . The digits e j are
selected so that E[ j + 1] converges to 1 while b bits of
the final result are obtained per iteration. For a result
accurate to n bits, a total number of N = �n/b� itera-
tions are necessary. After performing the last iteration
of the recurrence the results are:

E[N + 1] ≈ 1

L[N + 1] ≈ Y + ln(X ) (5)

Although the proposed algorithm is designed for the
computation of the natural logarithm, once such value
has been obtained, the logarithm in any base β can
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be computed by using the well-known mathematical
property:

logβ(X ) = logβ(e) ln(X ) (6)

To have the selection function for e j dependent on
the same bit positions in all iterations, a scaled remain-
der (residual) is defined as

W [ j] = r j (E[ j] − 1) (7)

and the recurrence on E is replaced by the residual
recurrence

W [ j + 1] = r (W [ j] + e j + e j W [ j]r− j )

L[ j + 1] = L[ j] − ln(1 + e jr
− j ) (8)

with j ≥ 1, W [1] = r (X − 1) and L[1] = Y .
The digits e j are selected as a function of the lead-

ing digits of the scaled residual in such a way that the
residual W [ j] remains bounded.

For a faster execution of the recurrences, a redundant
representation of the residual is used making the delay
for addition and multiplication independent of the pre-
cision. A redundant digit set is used for e j to simplify
the selection function as discussed next.

The conversion from redundant to conventional rep-
resentation, if required, can be performed using an
on-the-fly method [27], avoiding the need for a carry-
propagate addition. Moreover, this on-the-fly unit can
also perform the exact rounding of ln (X ), using the in-
formation of the available remainder to select the cor-
rect rounding direction for the result [28].

2.1. Selection by Rounding

Since we are considering a high radix, for the selection
of the digits e j we use selection by rounding to the
integer part of the residual, similar to [3, 14, 16, 18,
19]. Since the residual W [ j] is in a redundant form,
the rounding is performed on an estimate Ŵ [ j]. The
estimate is obtained by truncating the signed-digit
representation W [ j] to t fractional bits (it would be
equivalent using carry–save representation for the
residual W [ j], and performing the selection on an
estimate Ŵ [ j] obtained by truncating W [ j] + 2−t ;
that is, adding always a 1 in the position with weight
2−t before rounding).

The selection function is

e j = −round(Ŵ [ j]), (9)

The sign of the digit e j is defined as opposite of
the sign of W [ j] in order to satisfy a bound on the
residual, and thus assuring the convergence. The digit
set is e j ∈ {−(r − 1), . . . ,−1, 0, 1, . . . , (r − 1)}.

When e j is selected by rounding as indicated in (9),

−1

2
− 2−t ≤ W [ j] + e j ≤ 1

2
(10)

Since the maximum value of |e j | obtained by the
rounding scheme must be (r − 1), the value of the es-
timated residual is bounded by

−r + 1

2
≤ Ŵ [ j] < r − 1

2
, (11)

which results in the condition

−r + 1

2
≤ W [ j + 1] < r − 1

2
− 2−t (12)

Since

W [ j + 1] = r (W [ j] + e j ) + e jr
− j+1

× (W [ j] + e j − e j ), (13)

the conditions for convergence are the following:

r

2
+ e jr

− j+1

(
1

2
− e j

)
< min

(
r − 1

2
− 2−t ,

P[ j + 1]

)
(14)

and

r

(
−1

2
− 2−t

)
+ e jr

− j+1

(
−1

2
− 2−t − e j

)

≥ max

(
−r + 1

2
, Q[ j + 1]

)
(15)

where P[ j + 1] and Q[ j + 1] are the positive and
negative ranges of convergence for iteration j + 1:

P[ j + 1] = r j+1

( ∞∏
k= j+1

(1 + (r − 1)r−k) − 1

)
, (16)



112 Piñeiro, Ercegovac and Bruguera

and

Q[ j +1] = r j+1

( ∞∏
k= j+1

(1−(r −1)r−k)−1

)
(17)

Since P[ j+1] > r− 1
2 −2−t and Q[ j+1] < −r+ 1

2 ,
the conditions for convergence are, on one hand,

r

2
− 1

2
− 2−t + e2

j r
− j+1 + 1

2
e jr

− j+1 > 0, (18)

and on the other:

r

2
− 1

2
−2−t r −e jr

− j+1

(
− 1

2
−2−t +e j

)
≥ 0 (19)

The main concern at this point is to minimize j ,
the number of iterations when selection by rounding
cannot be performed. Once this minimum value has
been obtained, the corresponding minimum value of
t must be determined and, finally, the corresponding
minimum value of r .

The numerical analysis of conditions (18) and (19)
has been performed with the computer algebra system
Maple [29]. This analysis shows that the first condition
is satisfied for j ≥ 1, t ≥ 0 and any positive radix
r ≥ 2. On the other hand, the condition (19) is satisfied
if j ≥ 3, t ≥ 2 and r ≥ 8. Therefore, the selection
function by rounding is only valid for iterations j ≥ 3.

The use of two look-up tables for j = 1 and j =
2 would result in a significant increase in the overall
hardware requirements. Therefore, we take advantage
of the fact that selection by rounding can be used if the
values of digit e2 are restricted thus avoiding the use
of the look-up table for j = 2. If the values j = 2
and t = 2 (worst case for t value) are substituted in
condition (19), the following constraint is obtained:

r

4
− 1

2
− 3

4
e2r−1 − e2

2r−1 ≥ 0, (20)

The roots of this inequation are:

e2 = −3

8
± 1

8

√
16r2 − 32r + 9 (21)

Therefore, if e1 is read from a look-up table ad-
dressed by the input operand X so that

|e2| ≤
√

3

2

r

2
− 3

8
, (22)

selection by rounding can be used also for j = 2. Note
that the value (22) is slightly less than r/2, which means

that the digit set has been reduced by half. This solu-
tion results in a significant reduction in the hardware
requirements regarding the use of a look-up table for
j = 2, although it also results in an over-redundant
digit e1.

In summary:

• For iterations j ≥ 3 convergence is guaranteed with
selection by rounding and a digit set −(r − 1) ≤
e j ≤ r − 1.

• For iteration j = 2, convergence is achieved with
selection by rounding if |e2| ≤

√
3

2
r
2 − 3

8 .
• Iteration j = 1 does not converge with selection by

rounding, so selection by table look-up is performed,
in such a way so that the constraints in the value of
|e2| are enforced.

2.2. Selection of e1 by Table Look-Up

The parameters and constraints for the selection by a
table of the first digit e1 are obtained in this section.
We call (AL , AU ) the interval of convergence for W [2].
Therefore, the selection by table in iteration j = 1 must
guarantee that AL < W [2] < AU . The values for these
bounds are:

AL = e2 min − 1

2
, AU = e2 max + 1

2
− 2−t (23)

with the values of e2 min and e2 max set by condition (22).
The first iteration for the residual recurrence

is

W [2] = r (W [1] + e1 + e1W [1]r−1) (24)

and since W [1] = r (X − 1):

W [2] = r2(X − 1) + re1 X (25)

We call q the number of fractional input bits to the
table. For each interval [1+v2−q , 1+(v+1)2−q ) of the
input operand X , with 1 ≤ X < 2 and v ≥ 0 integer,
a corresponding e1 value must be read from the table,
verifying the following conditions:

AL < r2v2−q + e1r (1 + v2−q ), (26)

and

r2(v + 1)2−q + e1r (1 + (v + 1)2−q ) < AU (27)
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These bounds result in the following condition:

AL − r2v2−q

r (1 + v2−q )
< e1 <

AU − r2(v + 1)2−q

r (1 + (v + 1)2−q )
(28)

The value of q must guarantee that the difference
between the upper bound and the lower bound on e1 is
always positive:

DIFF = AU − r2(v + 1)2−q

r (1 + (v + 1)2−q )
− AL − r2v2−q

r (1 + v2−q )
, (29)

which results in

DIFF

= AU − AL + AU v2−q − AL (v + 1)2−q − r22−q

r (1 + v2−q )(1 + (v + 1)2−q )
(30)

The minimum value of q that satisfies this constraint
is q = b +1. Therefore, b +1 bits of the input operand
X are necessary to address the initial look-up table for
the selection of the digit e1.

2.3. Approximation of Logarithm Constants

The constants −ln(1 + e jr− j ) are usually stored in
look-up tables. As the value of the radix r increases,
the size of these tables can become prohibitive. There-
fore, any effort done in reducing the size of the
tables may lead to a significant reduction in the overall
hardware requirements, especially for very-high radix
values.

Let us consider the series expansion of the logarithm
function ln(1 + x):

ln(1 + x) ≈ x − x2

2
+ · · · (31)

After iteration j = k1, the values − ln(1 + e jr− j )
can be approximated by −e jr− j , which can be imple-
mented by wired shifts of the digits e j with opposite
sign [18, 20, 30].

We now determine the value of k1. For a precision
of n bits, the series approximation can be used in the
iterations when the constraint x2/2 < 2−n is met:

1

2
e2

j r
−2 j < 2−n (32)

Since |e j | < r , then e2
j < r2, and taking into account

that r = 2b, the bound becomes:

22b(− j+1) < 2−n+1, (33)

which results in

j >
n − 1

2b
+ 1 (34)

Taking into account that N = � n
b � is the total number

of iterations, we can conclude that the approximation
can be used in iterations j ≥ k1 where

k1 =
⌈

N

2

⌉
+ 1 (35)

Summarizing, for j = 1 a table storing − ln(1 +
e1r−1) must be used, the next N1 = 
 N−1

2 � iterations
a table storing − ln(1 + e jr− j ) is necessary, and in the
last N2 = � N−1

2 � iterations the approximation −e jr− j

is used instead.

3. Architecture

In this section we propose a sequential architecture for
the computation of the logarithm based on the algo-
rithm presented in the previous section. This type of
architecture is usually suitable for general purpose ap-
plications, although a pipelined version of the architec-
ture could be also proposed for numerically intensive
applications or specific-purpose implementations. The
latency is N cycles, while the throughput is one re-
sult per N cycles. Multiplexers are inserted at the input
of some logic blocks to allow their reutilization for
performing different computations depending on the
iteration.

Let us summarize the steps involved in the high-
radix algorithm proposed for the computation of the
logarithm:

• First iteration ( j = 1):

W [2] = r2(X − 1) + re1 X

L[2] = Y − ln(1 + e1r−1)

since W [1] = r (X − 1) and L[1] = Y , with e1

selected by table look-up in such a way that condi-
tion (22) is satisfied, and a restricted digit-set is used
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in the second iteration. The b + 1 most significant
bits of the input operand X are employed to address
the tables TAB(re1) and TAB(− ln(1 + e1r−1)).

• Iterations j = 2 to j = � N
2 � (
 N−1

2 � iterations):

W [ j + 1] = r (W [ j] + e j + e j W [ j]r− j )

L[ j + 1] = L[ j] − ln(1 + e jr
− j )

with e j selected by rounding the truncated residual
Ŵ [ j] and the constants − ln(1 + e jr− j ) read from
a look-up table addressed by the digits e j and the
iteration index j .

• Iterations j = � N
2 �+1 to j = N (� N−1

2 � iterations):

W [ j + 1] = r (W [ j] + e j + e j W [ j]r− j )

L[ j + 1] = L[ j] − e jr
− j

with e j selected by rounding the truncated residual
Ŵ [ j].

Figure 1 shows the block diagram of the proposed ar-
chitecture, with double lines for SD operands, thin for
digit-serial operands, and thick for parallel operands.
TAB(re1) and TAB(− ln e1) are the look-up tables stor-
ing re1 and − ln(1+e1r−1), respectively, addressed by
the b + 1 most significant bits of the input operand X .
Three main optimizations have been made regarding
the architecture proposed in [21, 22]: (i) a SD multiply-
add unit is used in the W [ j] recurrence, instead of

Figure 1. Block diagram of the proposed architecture.

separated SD multiplier and SD adder, (ii) the recod-
ing to SD-4 of the multiplier operand in the W [ j] re-
currence is done outside the multiply-add unit (by the
round&rec unit, and directly storing of e1 in SD-4 rep-
resentation in the initial look-up table), and (iii) the
on-the-fly conversion of the result from redundant to
conventional representation and final rounding are in-
cluded in the architecture [27, 28].

The main features of this architecture are:

• All variables are in redundant representation to al-
low faster execution of iterations, since the additions
become independent of the precision. Signed-digit
(SD) representation is used in our architecture, al-
though a similar approach could be proposed with
the use of carry-save (CS) representation [31].

• All products of the type re j , r2(X − 1) or r W [ j]
are performed as wired shifts, since r = 2b, while
products of the type W [ j]r− j and e jr− j are also
performed as shifts, but barrel shifters must be used
to carry out these computations.

• g guard bits are used in the look-up tables, registers
and other main logic blocks to prevent the truncation
error from affecting the final result. Since N is the
total number of iterations, g = �log2(N )� + 1 bits.

• SDAα is a signed-digit binary adder with α input bit-
vectors. The addition of two SD operands requires a
SDA4 adder, since the input operands are represented
by two bit-vectors each. SDA3 adders are used in
our architecture for accumulating an operand in SD
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representation and an operand in two’s complement
(2C) representation.

• The multiplier operand in the multiply-add unit is in
SD radix-4 representation to reduce by half the num-
ber of partial products to be accumulated by the tree.
However, since the multiplicand is represented in SD
radix-2, the size of this unit is roughly double of a
regular multiplier with non-redundant multiplicand,
and one extra level in the partial products accumula-
tion tree is required.

• The constants − ln(1 + e jr− j ) are approximated by
−e jr− j for iterations j ≥ � N

2 � + 1. Therefore, no
table is needed in those iterations.

• The selection by rounding of digits e j is performed
by two different units. The first one, the round&rec
unit, takes the (b + t) most significant bits of W [ j]
(t = 2) and produces a SD radix-4 representation of
the digit e j , to be used as multiplier in the multiply-
add unit. On the other hand, the round&assim unit
takes the same (b + t) input word, but produces a
two’s complement (2C) representation of the co-
efficient with opposite sign −e j , by rounding the
input word and performing its assimilation to non-
redundant representation. This 2C representation is
used for addressing the look-up table storing the log-
arithm constants and as input for the barrel shifter
producing −e jr− j .

3.1. Cycle Time

The cycle time of the sequential architecture is set by
the delay of the slowest path in the circuit. Depending
on the value of the radix, it can be any of the main
paths of the implementation. These paths are shown in
Fig. 1:

• Table (re1) + mux + Mult/Add + regW
• Table (− ln(1 + e1r−1)) + mux + SDA3 + regL
• shifter + mux + Mult/Add + regW
• round&rec + SDA4 + mux + Mult/Add (accum.

tree) + regW
• round&assim + Table (−ln(1 + e jr− j )) + mux +

SDA3 + regL

3.2. Hardware Requirements

The hardware requirements for this architecture consist
of the table storing the digits e1 (2b+1 × β bits, with
β = 3�(b + 1)/2�), the table storing their logarithm

(2b+1 × (n + g) bits), the table storing the logarithm
constants for the next N1 = 
 N−1

2 � iterations ((2b+1+i ×
(n + g) bits, with i = �log2(N1)�), one (b + 1) × (n +
g) + (n + g) bit SD multiply-add unit, one b-bit SDA4
adder, one (n + g)-bit SDA3 adder, one (n + g)-bit
shifter for the N − 1 iterations when W [ j]r− j+1 is
needed, one (b + 1)-bit shifter for the � N−1

2 � iterations
when the approximation −e jr− j to the logarithm is
required, the registers regW and regL , the round&rec
and round&assim units, the on-the-fly conversion unit
and several multiplexers.

4. Evaluation and Analysis

In this section we present estimates of the execution
time and the area costs of the architecture proposed in
the previous section, for precisions of n = 16, 32 and
64 bits (of interest in DSP applications), and n = 24
and 53 bits (for conventional floating-point operations),
for radix values from r = 8 to r = 1024. These esti-
mates are based on an approximate model for the cost
and delay of the main logic blocks used.

4.1. Delay and Area Model for the Main
Logic Blocks

The actual delays and area costs depend on the technol-
ogy used and on the actual implementation. However,
this model provides a good first–order approximation
to the actual execution time and area values, and has
been widely used in technology-independent compar-
isons [4, 32, 33]. The units employed are the delay τ

and the area f a of a full-adder. More details about the
model used can be found in [20].

4.1.1. Delay Estimates. The following assumptions
have been made:

• SD Multipliers. The delay on their critical path is
composed of two terms instead of three, since no final
assimilation to non-redundant representation is per-
formed. The first term corresponds only to the mul-
tiple generation and buffering (1τ ), since the multi-
plier operand is already in SD radix-4 representation
(the recoding is performed in the round&rec unit,
and the digits e1 are stored in the look-up table al-
ready in SD-4 form). The second term comes from
the partial products accumulation. We assume a re-
duction tree to be used as the multioperand adder,
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composed of SDA4 and SDA3 adders, with delays
of 1.5τ and 1τ , respectively.

• The delay of the shifters depends on the number of
possible shifts of the input vectors. For up to 4 shifts,
the delay will be 0.5τ (one level of 4:1 multiplex-
ers). Between 5 and 16 shifts, the delay will be 1.5τ

(two levels of 4:1 multiplexers, plus buffering and
control overhead), and for combinations between 17
and 64, we assume a delay of 3τ . The delay of the
round&rec unit is 2τ (1.5τ from the rounding and re-
coding scheme and 0.5τ from the initial bit-inversion
of the truncated residual Ŵ [ j], necessary to produce
the digit e j with opposite sign). The round&assim
unit has a delay of 2τ for an input up to 8 bits, and
3τ if the input has up to 16 bits. The 2:1 and 3:1
multiplexers have a delay of 0.5τ , and the delay of
the registers is about 1τ .

• Look-up tables. According to [19, 32] and to our own
estimates obtained from implementation [4, 22], a
delay of about 3τ for 7 input bit tables is assumed,
3.5τ for 8 input bit tables, 4τ for 9 input bit tables,
4.5τ for 10-11 input bit tables, 5τ for 12-13 input bit
tables and 6τ for 14-15 input bit tables.

4.1.2. Area Estimates. The model we use for the
area estimates is taken from [33]. The main contri-
butions to the area of the architecture come from the
SD multiplier, SDA adders, shifters, registers, multi-
plexers and look-up tables. The area of the round&rec
and round&assim units is small when compared to the
area of the main blocks and can be neglected in this
approximate model.

• SD Multipliers and SD Adders. As an example of the
model used, let’s consider a 8×56 bit multiplier, with
an area estimate of 636 f a. There are two stages in
the multiplier, with a different contribution (300 f a
+ 336 f a) to the total area:

– In the initial SD radix-4 recoding and multiple
generation, 6 nand/nor gates are required for each
3–bit recoding group. Since 8 partial products
have to be generated (4 partial products for each
SD word of the multiplicand operand), with a
wordlength of 56-bits each, the total number of
nand/nor gates used is about 2688. A standard 1–
bit full–adder has a hardware complexity equiva-
lent to 9 nand/nor gates. Therefore, the first stage
of the multiplier can be estimated as having a total
area of about 300 f a.

– The accumulation tree is composed of 2 lev-
els (8 → 4 → 2 operands), employing three
SDA4 adders and no SDA3 adders. Considering
a wordlength of 56 bits for each of these adders,
and since a n-bit SDA3 adder has an area of n
f a, while a n-bit SDA4 is composed of 2n f a,
the total area of this stage is 6 × 56 = 336 f a.

• The shifters have an area of 0.5 × n for n-bit vectors
up to four possible shifts, 0.9 × log2( j) × n if the
number j of possible shifts is between 5 and 16, and
2.1× log2( j)×n if j goes from 17 to 64. The contri-
bution of the shifters to the area must be duplicated
when considering redundant operands. The area of
the multiplexers is about 0.25 × k × n, with k the
number of input vectors and n their wordlength. The
area of a n-bit register can be estimated as 0.5 × n
f a, and an on-the-fly conversion and rounding unit
requires the use of 9 n-bit registers [15].

• Look-up tables. Estimates for look-up tables can be
found in [19], but according to our own estimates [4,
22] they seem too pessimistic. Our model assumes
a 40 fa/Kbit rate for tables addressed by up to 6-bit
words, a 35 fa/Kbit rate for 7–11 input bit tables with
the delays described above, a 30 fa/Kbit rate for 12–
13 input bit tables and a 25 fa/Kbit rate for 14–15
input bit tables.

4.2. Analysis of the Area and Speed Tradeoffs

Tables 1 to 5 show the latency, cycle time, execution
time, combinational area, look-up table area and total
area for the proposed architecture, for precisions n =
16, 24, 32, 53 and 64-bits, respectively, and for radix
values from r = 8 to r = 1024. The latency is given in
cycles, the cycle time and execution time are expressed
in terms of τ , and the area unit is f a. The dependence
of both the execution times and the total areas with the
value of the radix r is graphically represented in Fig. 2
for all considered precisions.

The analysis of the obtained results can be summa-
rized in the following points:

• The main trends in both the execution time and the
total area are consistant for all analyzed precisions.

• The cycle time mainly depends on the radix, and
not on target precision, due to the use of redundant
arithmetic.

• The main contribution to the total area for the pro-
posed architecture comes from the combinational
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Table 1. Execution time and total area for the proposed architecture (n = 16).

Radix Latency Cycle time (τ ) Exec. time (τ ) Comb. area ( f a) Table area ( f a) Total area ( f a)

8 6 7.0 42.0 407 40 447

16 4 7.5 30.0 425 54 479

32 4 7.5 30.0 430 116 546

64 3 9.5 28.5 493 219 702

128 3 10.0 30.0 497 437 934

256 2 10.5 21.0 528 542 1070

512 2 11.0 22.0 530 1155 1685

1024 2 11.5 23.0 594 2380 2974

Table 2. Execution time and total area for the proposed architecture (n = 24).

Radix Latency Cycle time (τ ) Exec. time (τ ) Comb. area ( f a) Table area ( f a) Total area ( f a)

8 8 7.0 56.0 557 90 647

16 6 7.5 45.0 653 113 766

32 5 7.5 37.5 616 214 830

64 4 9.5 38.0 688 279 967

128 4 10.0 40.0 693 577 1270

256 3 10.5 31.5 782 1171 1953

512 3 11.0 33.0 784 2415 3199

1024 3 11.5 34.5 878 4900 5778

Table 3. Execution time and total area for the proposed architecture (n = 32).

Radix Latency Cycle time (τ ) Exec. time (τ ) Comb. area ( f a) Table area ( f a) Total area ( f a)

8 11 7.5 82.5 728 187 915

16 8 7.5 60.0 831 210 1041

32 7 8.0 56.0 836 427 1263

64 6 9.5 57.0 958 515 1473

128 5 10.0 50.0 909 1050 1959

256 4 10.5 42.0 1003 1451 2454

512 4 11.0 44.0 1005 2975 3980

1024 4 11.5 46.0 1127 6021 7147

area for small radices, but the tables become the pri-
mary factor for radix r = 256 when n = 16, 24, for
r = 128 when n = 32, 53, and for r = 64 when
n = 64-bits of precision. This is due to the exponen-
tial growth in the table size with the radix.

• The cycle time increases with the radix, but the la-
tency decreases. A good tradeoff between latency and
cycle time can be achieved for specific values of r ,
leading to low execution times. The area requirements
must also be taken into account when trying to deter-
mine the most efficient implementations. According

to Tables from 1 to 5 and to Fig. 2, the best trade-
offs correspond to the radix values highlighted in the
tables and the charts. We can conclude that in ap-
plications where speed is the main constraint, the
most efficient implementations correspond to radix
r = 256, for n = 16, 24, 32 and 64 bits of preci-
sion, and radix r = 128 for n = 53-bit computations.
On the other hand, for applications with tighter area
constraints, implementations with radix r = 16 for
n = 16, r = 32 for n = 24, 32, 64, and with r = 64
for n = 53-bits are probably more efficient.
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Table 4. Execution time and total area for the proposed architecture (n = 53).

Radix Latency Cycle time (τ ) Exec. time (τ ) Comb. area ( f a) Table area ( f a) Total area ( f a)

8 18 8.0 144.0 1527 302 1829

16 14 8.0 112.0 1349 597 1946

32 11 8.5 93.5 1355 1211 2556

64 9 9.5 85.5 1544 1333 2877

128 8 10.0 80.0 1522 2642 4164

256 7 10.5 73.5 1717 5302 7019

512 6 11.0 66.0 1719 6615 8334

1024 6 11.5 69.0 1918 12140 14058

Table 5. Execution time and total area for the proposed architecture (n = 64).

Radix Latency Cycle time (τ ) Exec. time (τ ) Comb. area ( f a) Table area ( f a) Total area ( f a)

8 22 8.0 176.0 1777 658 2435

16 16 8.0 128.0 1566 697 2263

32 13 8.5 110.5 1572 1401 2973

64 11 9.5 104.5 1806 2759 4565

128 10 10.0 100.0 1812 3123 4935

256 8 10.5 84.0 2108 6177 8185

512 8 11.0 88.0 2110 11065 13075

1024 7 11.5 80.5 2242 22210 24442

The main conclusion that can be drawn from this
analysis is that little advantage, or no advantage at all,
is obtained from using very-high radix values such as
r = 512 and r = 1024, because the execution times are
similar to those achieved with r = 128 or r = 256, but
the area requirements become prohibitive.

5. Comparison

In this section we perform a comparison of the pro-
posed architecture with a conventional radix-4 digit-
recurrence implementation for a precision of n = 32
bits, using redundant arithmetic and assuming the same
model for the delay and area used to obtain the esti-
mates for our architecture. We also compare the exe-
cution time and area estimates of our optimized archi-
tecture with the architecture proposed in [21, 22].

The radix-4 recurrence for computing the logarithm
is:

W [ j + 1] = 4W [ j] + 4e j + e j W [ j]4− j+1

L[ j + 1] = L[ j] − ln (1 + e j 4
− j ) (36)

with j ≥ 1, e j = {−2, −1, 0, +1, +2}, W [1] =
4 (X − 1) and L[1] = Y .

The selection of the digits e j is performed by com-
paring the truncated residual Ŵ [ j] with a set of con-
stants. The employed digit set allows the computation
of the iterations without performing any multiplication
(a conventional shift-and-add algorithm). The block
diagram of the radix-4 digit-recurrence architecture is
shown in Fig. 3.

A look-up table of size 2s+1 × (n + g) bits is used
for storing the elementary values of the logarithms
− ln(1 + e j 4− j ), with s = �log2(k)� and k = 
 n

4 �
the number of iterations when the value of the loga-
rithm cannot be approximated by the shifted coefficient
−e j 4− j . The cond inv unit carries out the computation
of the product e j W [ j]4− j+1.

The cycle time of the radix-4 architecture is 6.5τ , as
shown in Fig. 4. Since 2 bits of the result are extracted
per iteration, and assuming the use of g = 5 guard
bits, the latency of a standard sequential architecture
for n = 32-bits of precision is 16 cycles. Therefore,
the execution time can be estimated as 104τ .

The hardware requirements for this radix-4 archi-
tecture are also detailed in Fig. 4. The estimate for the
total area is around 843 f a, with important contribu-
tions from the selection table, the on-the-fly conversion
and rounding unit [27, 28], and the shifter, due to the
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Figure 2. Execution time and area cost for the proposed architecture.

high number of iterations required and to the fact that
the input operand to this unit, W [ j], is in redundant
representation.

A speed-up over 2 can be achieved by using our high-
radix algorithm, as shown in Table 6, which means
that the execution time of the radix-4 redundant im-
plementation is reduced by half. We also show in
this table that the optimizations made in the archi-
tecture allow significant reductions in the cycle time
and therefore the execution time regarding the archi-
tecture proposed in [21, 22], leading to higher speed-
ups. We can conclude that our high-radix scheme is
an interesting alternative for applications with speed
requirements that cannot be met by traditional low-

radix implementations, although area restrictions may
apply, and therefore the actual value of the radix to
be used must be carefully selected taking into account
the analysis of the tradeoff between area and speed
presented.

The conclusions drawn from the analysis performed
can possibly be extended to other high-radix algorithms
with similar features (three or more look-up tables ad-
dressed by (b + 1) bits and a rectangular (b + 1) ×
(n + g)-bit multiplier). Examples of these type of algo-
rithms are the CORDIC implementations proposed in
[3, 18].

We have estimated [20] that a radix-128 implemen-
tation could lead to an area reduction by a factor of
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Table 6. Comparison with a radix-4 redundant architecture for n = 32 bits.

Scheme Latency Cycle time (τ ) Exec. time (τ ) Area ( f a) Speed-up Area ratio

radix-4 red 16 6.5 104 843 1.0 1.0

radix-32 [22] 7 9.0 63 1182∗ 1.7 1.4∗

radix-128 [22] 5 11.0 55 1827∗ 1.9 2.2∗

radix-256 [22] 4 12.5 50 2284∗ 2.1 2.7∗

radix-32 7 8.0 56 1263 1.9 1.5

radix-128 5 10.0 50 1959 2.1 2.3

radix-256 4 10.5 42 2454 2.5 2.9

∗on-the-fly conversion not included.

Figure 3. Block diagram of a sequential radix-4 architecture.

Figure 4. Delay and area estimates for a radix-4 logarithm computation (n = 32-bits).

3 regarding the radix-512 implementation proposed
for the CORDIC vectoring algorithm [18], with sim-
ilar execution times (120τ and 80τ for modulus and
angle computation, respectively, instead of 115τ and
73.5τ ).

6. Conclusion

A digit-recurrence algorithm for the computation of
the logarithm has been presented in this paper, with
the use of high-radix and selection by rounding of
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the digits e j . Selection by table in the first iteration
is necessary to guarantee the convergence of the algo-
rithm. The use of high-radix significantly reduces the
latency of the algorithm, leading to faster execution
times.

The value of the logarithm is obtained through
the computation of a multiplicative normalization,
by accumulating the values of elementary logarithms
stored in a look-up table addressed by the coeffi-
cient e j and the iteration index j . The size of this
table can be reduced by using an approximation to
the logarithm in iterations j ≥ � N

2 � + 1. Redun-
dant representation is used for all variables in order
to reduce the cycle time, making the delay for addi-
tion independent of the precision, and an on-the-fly
unit performs the conversion of the result into non-
redundant conventional representation and the final
rounding.

A sequential architecture implementing our algo-
rithm has been proposed, and an analysis of the trade-
offs between area and speed in the implementation
of this architecture has been performed. Such analy-
sis is based on estimates of the execution time and
area obtained for precisions n = 16, 24, 32, 53 and
64-bits and for radix values from r = 8 to 1024,
according to an approximate model for the delay
and area of the main logic blocks employed in the
architecture.

The main results of our analysis are that: (i) the best
tradeoffs are obtained for radix values r = 16, 32, 64
for applications with moderate performance and area
constraints, (ii) the best tradeoffs are obtained for radix
values r = 128, 256 for applications with high-speed
requirements, and (iii) there is no advantage in us-
ing very-high radix values r = 512 and r = 1024,
since they provide similar execution times as those
obtained with r = 128, 256, while their hardware
requirements are significantly higher (due to the ex-
ponential growth in the size of the tables with the
radix).

A comparison with a redundant radix-4 imple-
mentation of the recurrence for computing the log-
arithm shows a reduction by half in the execution
time with our high-radix scheme. Therefore, our al-
gorithm provides a high-speed alternative to tradi-
tional digit-recurrence implementations. Moreover, the
conclusions drawn from our analysis can also be
used to obtain significant improvements in the imple-
mentation of similar algorithms, such as high-radix
CORDIC.
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21. J.-A. Piñeiro, M.D. Ercegovac, and J.D. Bruguera, “High-Radix
Logarithm with Selection by Rounding,” in Proc. IEEE 13th Intl.
Conference on Application-specific Systems, Architectures and
Processors (ASAP02), 2002, pp. 101–110.
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