
On the Design of an On-line Complex Householder
Transform

Robert McIlhenny
Computer Science Department

California State University, Northridge
Northridge, CA 91330
rmcilhen@csun.edu

Milos D. Ercegovac
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

milos@cs.ucla.edu

Abstract— In this paper, we present an implementation for
the Complex Householder Transform, using complex number
on-line arithmetic, based on adopting a redundant complex
number system (RCNS) to represent complex operands as a single
number. We present comparisons with (i) a real number on-line
arithmetic approach, and (ii) a real number arithmetic parallel
approach, to demonstrate a signi cant improvement in cost.

I. INTRODUCTION

The Householder Transform [4] is an important operation
in numerous signal processing applications, including QR
decomption and array processing [7]. When the elements of
the matrix are complex numbers, it is denoted the Complex
Householder Transform (CHT) [2]. The CHT is applied to
a column vector x to zero out all the elements except the
rst one. Given a column vector x = [x1, . . . , xk]T ∈ Ck,

where x1 = |x1|ejθ with θ ∈ R, the basic steps of the CHT
algorithm are: (i) de ne a column vector u = x + e jθ||x||2e1,
where e1

T = [1, 0, . . . , 0]; (ii) de ne the k × k CHT B as:

B = I − 2
uHu

uuH (1)

(iii) apply the matrix B to the vector x to produce a column
vector y = Bx, in which all elements are zeroed out except
for the rst element, i.e.

⎡
⎢⎢⎢⎣

B11 B12 · · · B1k

B21 B22 · · · B2k

...
...

. . .
...

Bk1 Bk2 · · · Bkk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y1

0
...
0

⎤
⎥⎥⎥⎦ (2)

In these steps, I is the k × k identity matrix and uH

is the complex conjugate transpose of u. The parameter
ejθ = x1√

x1x∗
1
, where x∗

1 is the complex conjugate of x1. The

parameter ||x||2 is the norm of x of degree two, in which
||x||2 =

√
x1x∗

1 + . . . + xkx∗
k . The product uHu produces a

single real value in which uHu = u1u
∗
1 + u2u

∗
2 + . . . + uku∗

k,
since u is a column vector and uH is a row vector. The
product uuH is a k× k matrix V , in which each real element
vij = uiu

∗
j .

II. COMPLEX NUMBER ON-LINE FLOATING-POINT

ARITHMETIC

On-line arithmetic [3] is a class of arithmetic operations
in which all operations are performed digit serially, in a
most signi cant digit rst (MSDF) manner. Several advan-
tages, compared to conventional parallel arithmetic, include:
(i) ability to overlap dependent operations, since on-line algo-
rithms produce the output serially, most-signi cant digit rst,
enabling successive operations to begin before previous op-
erations have completed; (ii) low-bandwidth communication,
since intermediate results pass to and from modules digit-
serially, so connections need only be one digit wide; and (iii)
support for variable precision, since once a desired precision
is obtained, successive outputs can be ignored. One of the key
parameters of on-line arithmetic is the on-line delay, de ned
as the number of digits of the operand(s) necessary in order
to generate the rst digit of the result, which is gnerally one
cycle after the result is computed. Each successive digit of the
result is generated one per cycle. This is illustrated in Figure 1,
with on-line delay δ = 4. The latency of an on-line arithmetic
operator, assuming m-digit precision is then δ + m− 1.

δ=4

input

compute

output

Fig. 1. On-line delay of a function

Complex number on-line arithmetic [6] uses a class of on-
line arithmetic operators on complex number operands. For
ef cient representation, a Redundant Complex Number System
(RCNS) [1] is adopted. A RCNS is a radix rj system, in
which digits are in the set {−a, . . . , 0, . . . , a}, where r ≥ 2
and �r2/2� ≤ a ≤ r2 − 1. Such a number system can be
denoted RCNSrj,a. A Redundant Complex Number System
with r = 2, a = 3 denoted RCNS2j,3, allows ease of the
de nition of primitive on-line arithmetic modules, as well as
ease of conversion to and from other representations.

3181424407850/06/$20.00

This number system was introduced as Quarter-imaginary
Number System in [5]. At the binary level, the digits will
be represented using borrow-save encoding, in which each
digit xk ∈ {−3,−2,−1, 0, 1, 2, 3} is represented as 4 bits
(x+

k,1, x
−
k,1, x

+
k,0, x

−
k,0) such that xk = 2x+

k,1 − 2x−
k,1 + x+

k,0 −
x−

k,0. This is an extension of radix 2 borrow-save encoding,
in which each digit xk ∈ {−1, 0, 1} is represented as 2 bits
(x+

k , x−
k) such that xk = x+

k − x−
k .

The throughput of a radix 2j on-line arithmetic operator
is the same as for the radix 2 implementation of a complex
arithmetic operator. A radix 2j on-line arithmetic operator
generates real and imaginary digits in alternate cycles, with
each radix 2j digit corresponding to two radix 2 digits. The
equivalent radix 2 implementation of a complex on-line arith-
metic operator generates real and imaginary digits in the same
cycle. This is demonstrated below for the output of two radix
2j borrow-save encoded digits z1 = (z+

1,1, z
−
1,1, z

+
1,0, z

−
1,0) and

z2 = (z+
2,1, z

−
2,1, z

+
2,0, z

−
2,0), and four radix 2 borrow-save en-

coded digits, consisting of real digits zR,1 = (z+
R,1, z

−
R,1) and

zR,2 = (z+
R,2, z

−
R,2) and imaginary digits zI,1 = (z+

I,1, z
−
I,1)

and zI,2 = (z+
I,2, z

−
I,2).

z+
1,1

z-
1,1

z+
1,0

z-
1,0

z+
2,1

z-
2,1

z+
2,0

z-
2,0

z+
R,1

z-
R,1

z+
I,1

z-
I,1

z+
R,2

z-
R,2

z+
I,2

z-
I,2

Radix-2: RCNS :2j,3

Fig. 2. Throughput of radix 2 and radix 2j digits

Since the throughputs are equal (differing only in respective
on-line delays), a radix 2j output can be converted to a
radix 2 format for input to radix 2 on-line arithmetic oper-
ators, and vice versa, at the digit level. The algorithm below
demonstrates the conversion from a radix 2j borrow-save digit
zk = (z+

k,1, z
−
k,1, z

+
k,0, z

−
k,0) to equivalent individual real and

imaginary radix 2 borrow-save digits zR,k = (z+
R,k, z−R,k) and

zI,k = (z+
I,k, z−I,k).

Radix 2j to Radix 2 Borrow-save Conversion

if k mod 4=0 then
(z+

R,k, z−R,k) = (z+
k,0, z

−
k,0)

(z+
I,k, z−I,k) = (z+

k+1,0, z
−
k+1,0)

else if k mod 4=1 then
(z+

R,k, z−R,k) = (z+
k+1,0, z

−
k+1,0)

(z+
I,k, z−I,k) = (z+

k,0, z
−
k,0)

else if k mod 4=2 then
(z+

R,k, z−R,k) = (z+
k,0, z

−
k,0)

(z+
I,k, z−I,k) = (z+

k+1,0, z
−
k+1,0)

else if k mod 4=3 then
(z+

R,k, z−R,k) = (z+
k+1,0, z

−
k+1,0)

(z+
I,k, z−I,k) = (z+

k,0, z
−
k,0)

The algorithm below demonstrates conversion from real and
imaginary radix 2 borrow-save digits zR,k = (z+

R,k, z−R,k) and
zI,k = (z+

I,k, z−I,k) to a radix 2j borrow-save digit zk =
(z+

k,1, z
−
k,1, z

+
k,0, z

−
k,0).

Radix 2 to Radix 2j Borrow-save Conversion

if k mod 4=0 then
(z+

k,1, z
−
k,1, z

+
k,0, z

−
k,0) = (z+

R,k−1, z
−
R,k−1, z

+
R,k, z−R,k)

else if k mod 4=1 then
(z+

k,1, z
−
k,1, z

+
k,0, z

−
k,0) = (z+

I,k−1, z
−
I,k−1, z

+
I,k, z−I,k)

else if k mod 4=2 then
(z+

k,1, z
−
k,1, z

+
k,0, z

−
k,0) = (z+

R,k−1, z
−
R,k−1, z

+
R,k, z−R,k)

else if k mod 4=3 then
(z+

k,1, z
−
k,1, z

+
k,0, z

−
k,0) = (z+

I,k−1, z
−
I,k−1, z

+
I,k, z−I,k)

Using a radix 2j representation, a oating-point complex
number x = (XR + jXI) · (2j)ex can be normalized with
regard either to the real component XR or the imaginary
component XI , depending on which has larger absolute value.
The exponent ex is shared between the real and imaginary
component. A radix 2j fraction x is considered normalized
if 2−1 ≤ max(|XR|, |XI |) < 1. The normalization algorithm
which takes as input the generated output digit zk, the output
exponent ez and the on-line delay for the arithmetic operation
δ is shown below.

NORM(zk, ez, δ)

done = 0
while not(done) loop

if k = (δ − 2) and zk �= 0 then
ez = ez + 2

done = 1
if k = (δ − 1) and zk �= 0 and not(done) then

ez = ez + 1
done = 1

else if k ≥ δ and zk = 0 and not(done) then
ez = ez − 1

else if (k ≥ δ and zk �= 0) then
done = 1

end if
end loop

Although RCNS2j,3 allows exibility in representation,
there are also several drawbacks:

• Handling digits 3 and −3 requires producing signi cand
multiples 3X and −3X , requiring an extra addition step.

• A signi cand X with fractional real and imaginary
components XR and XI can have integer digits,
such as (11.3212)2j = 3

8 + 3
8j, which can compli-

cate ensuring complex signi cands within the range
max(|XR|, |XI |) < 1.

Several recoding algorithms to handle these issues are
described, including: (i) digit-set recoding; and (ii) most-
signi cant-digit recoding.

319

Digit-set recoding initially recodes a RCNS2j,3 digit xk ∈
{−3, . . . , 3} into a pair of digits (tk−2, wk), in which tk−2 ∈
{−1, 0, 1} and wk ∈ {−2, . . . , 2} such that xk = −4tk−2 +
wk. Then a RCNS2j,2 digit χk is computed as χk = tk +wk.
In order to restrict χk ∈ {−2, . . . , 2}, two cases of pairs of
values must be prevented: (i) tk = 1, wk = 2, (ii) tk =
−1, wk = −2. To do so, xk+2 is examined. If xk+2 ≤ −2
and xk = 2, which could allow the rst case, xk is recoded
as (1, 2), otherwise as (0, 2). In the same way, if xk+2 ≥
2 and xk = −2, which could allow the second case, xk is
recoded as (1, 2), otherwise as (0, 2) Then it is assured that
χk ∈ {−2, . . . , 2}. The digit-set recoding algorithm DSREC
is shown below.

DSREC(xk, xk+2)

(tk−2, wk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if xk = 3
(1, 2) if xk = 2 and xk+2 ≥ 2
(0, 2) if xk = 2 and xk+2 < 2
(0, 1) if xk = 1
(0, 0) if xk = 0
(0, 1) if xk = 1
(0, 2) if xk = 2 and xk+2 > −2
(1, 2) if xk = 2 and xk+2 ≤ −2
(1, 1) if xk = 3

χk = tk + wk

In order to handle carries produced when performing oper-
ations on signi cands consisting of RCNS2j,3 digits, most-
signi cant-digit recoding recodes most-signi cant residual
digits w−1, w0 ∈ {−1, 0, 1} of respective weights (2j)1 = 2j
and (2j)0 = 1, and digits w1, w2 ∈ {−3, . . . , 3}, of respective
weights (2j)−1 and (2j)−2, into digits ω1, ω2 ∈ {−3, . . . , 3}
of respective weights (2j)−1 and (2j)−2. The algorithm
MSREC for recoding general digits wk−2 and wk into digit
ωk is shown next.

MSREC(wk−2, wk)

ωk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if (wk−2 = 0 and wk = 3) or
(wk−2 = 1 and wk = 1)

2 if (wk−2 = 0 and wk = 2) or
(wk−2 = 1 and wk = 2)

1 if (wk−2 = 0 and wk = 1) or
(wk−2 = 1 and wk = 3)

0 if wk−2 = 0 and wk = 0
1 if (wk−2 = 0 and wk = 1) or

(wk−2 = 1 and wk = 3)
2 if (wk−2 = 0 and wk = 2) or

(wk−2 = 1 and wk = 2)
3 if (wk−2 = 0 and wk = 3) or

(wk−2 = 1 and wk = 1)

III. CHT IMPLEMENTATION

The CHT produces a complex column vector yk in which
y1 is the only non-zero element. Simplifying the computation
results in

y1 = −ejθ||x||2 = −x1

√
x1x∗

1 + . . . + xkx∗
k

x1x∗
1

(3)

The implementation requires k complex multipliers
(CMULT), k− 1 real adders (RADD), 1 real divider (RDIV),
a real square root unit (RSQRT), a unit to negate a digit
(NEG), and a complex-real multiplier (CRMULT) as shown in
Figure 3. Since the product of a complex-conjugate multiplier
is a real number, radix 2j to radix 2 converters will be used
to convert the outputs into radix 2 representation for input
to the real adders. Likewise, radix 2 to radix 2j converters
will be used to convert the output of the real square root
unit to radix 2j representation for input to the complex-
real multiplier, which produces the complex output y 1. The
recurrence algorithms and designs of the radix 2j on-line
oating-point complex-conjugate multiplier and the radix 2j

on-line oating-point complex-real multiplier are described
next.

CMULT CMULT

x 2 x 2
*

RADD

CMULT

x k x k
*

RADD

. . .

. . .

. . .

RADD

RDIV

x 1 x 1
*

. . .

RSQRT

CRMULT

NEG

y 1

.

Fig. 3. Computational graph of CHT

A. Radix 2j on-line oating-point complex-conjugate multi-
plication

Radix 2j oating-point complex-conjugate multiplication
(z = xx∗) is de ned such that given inputs x = (XR +
jXI) · (2j)ex and x∗ = (XR − jXI) · (2j)ex , the output
z = (ZR + jZI) · (2j)ez is produced such that

ZR = X2
R + X2

I

ZI = 0
ez = 2ex

(4)

The recurrence formula for radix 2j on-line multiplication
(z = xy) is the following:

W [k] = (2j)(W [k − 1]− z[k − 1])
+(2j)−δ+1(X [k]yk+δ−1 + Y [k − 1]xk+δ−1)

zk = 	WE [k]

(5)

320

where WE [k] is the low-precision estimate of the even-indexed
(real) component of W [k].

For radix 2j on-line oating-point complex-conjugate mul-
tiplication (z = xx∗), since

x∗
k+δ−1 =

{
xk+δ−1 if k + δ − 1 is even
−xk+δ−1 if k + δ − 1 is odd

z =
{ 	WE [k]
 if k + δ − 1 is even

0 if k + δ − 1 is odd

(6)

the recurrence can be rewritten as

W [k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2j)(W [k − 1]) + (2j)−δ+1((2XR[k − 1]
+xk+δ−1(2j)−k−δ+1)xk+δ−1)
if k + δ − 1 is even

(2j)(W [k − 1]− zk−1)
+(2j)−δ+1(−2XI [k − 1]
−xk+δ−1(2j)−k−δ+1)xk+δ−1)
if k + δ − 1 is odd

(7)

For the implementation, two types of modular slices are
required. An odd-indexed slice M2k−1 (k = 1 to �m/2�)
consists of one borrow-save digit multiplier, a 2:1 borrow-
save digit adder, a digit-wide latch, a D ip- op, a bit-wide D
ip- op, a digit-wide D ip- op, a TWICE unit for computing

2X [k − 1], a 3-to-1 MUX for appropriately appending digit
xk to vector 2X [k − 1], and a 2-to-1 MUX for appropriately
shifting the residual. An even-indexed slice M2k (k = 1
to 	m/2
) consists of a digit-wide latch, a bit-wide D ip-
op, and a TWICE unit for computing 2X [k − 1]. A ag bit

eo controls switching between odd-indexed and even-indexed
slices (eo = 1 for an odd-indexed slice, and eo = 0 for an
even-indexed slice). The CONJ unit generates digits of x∗.
The digit xk is recoded into digit set {−2, . . . , 2} using one
DSREC unit. The most-signi cant digit of the recurrence is
determined using one MSREC unit, which performs output
digit selection as well as handles most signi cant carry-out
bits of the adder. The MULT2E unit multiplies the operand
exponent by two to produce the output exponent e z . The
NORM unit normalizes the result by updating the output
exponent ez . The design of a m-digit signi cand and e-bit
exponent radix 2j on-line oating-point complex-conjugate
multiplier unit is shown in Figure 4. The number of individual
module types utilized, the cost per module type, and the total
overall cost are summarized in Table I. Assuming m = 24 and
e = 8, the cost is 224 CLB slices. The on-line delay is δ = 9.

B. Radix 2j on-line oating point complex-real multiplication

Radix 2j oating-point complex-real multiplication (z =
xy) is de ned such that given complex input x = (XR +
jXI) · (2j)ex and real input y = Y · (2)ey , the output z =
(ZR + jZI) · (2j)ez is produced such that

ZR = XRY
ZI = XIY
ez = ex + ey

(8)

TABLE I

COST OF RADIX 2j ON-LINE FLOATING-POINT COMPLEX-CONJUGATE

MULTIPLIER

Module Count CLB slices

MULT2E 1 e

CONJ 1 4

DSREC 1 12

3-to-1 MUX m
2

2.25m

2-to-1 MUX m
2

m

BSD mult. (⊗) m
2

2m

BSD adder (2:1) m
2

2m

MSREC 1 10

NORM 1 2e

Total cost �7.25m + 3e + 26�

D

L

2:1

M
1

"1"

MUX

D

L

M
2

D

L

2:1

M
3

MUX

L

M
m

D

L

2:1

M
m-1

MUX

zk-δ

MUX

D

MUX

D

MUX

D

"0"

MUX

"0"

MSREC

D

D

START

xk

DSREC

CONJ

D

MULT2E

ex

ez

eo

TWICE TWICE TWICE TWICE TWICE

NORM

ez

Fig. 4. Radix 2j on-line oating-point complex-conjugate multiplier

For radix 2j on-line oating-point complex-real multiplica-
tion, the recurrence from Equation 5 can be rewritten as:

W [k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2j)(W [k − 1]− zk−1)
+(2j)−δ+1(X [k]yk+δ−1 + Y [k − 1]xk+δ−1)
if k + δ − 1 is even

(2j)(W [k − 1]− zk−1)
+(2j)−δ+1(Y [k − 1]xk+δ−1)
if k + δ − 1 is odd

(9)
For the implementation two types of modular slices are

required. An odd-indexed slice M2k−1 (k = 1 to �m/2�)
consists of one borrow-save digit multiplier, a 2:1 borrow-
save digit adder, a digit-wide latch, a bit-wide D ip- op, and
a digit-wide D ip- op. An even-indexed slice M2k (k = 1
to 	m/2
) consists of two borrow-save digit multipliers, a 3:1
borrow-save digit adder, two digit-wide latches, a bit-wide D
ip- op, and a digit-wide D ip- op. The digits xk and yk are

recoded into the digit set {−2, . . . , 2} using two DSREC units.
The most-signi cant digits of the recurrence are determined
using two MSREC units, which perform output digit selection

321

as well as handling the most signi cant carry-out bits of the
adder. The ADDE unit adds the operand exponents to produce
the output exponent ez . The NORM unit normalizes the result
by updating the output exponent ez . The design of a m-digit
signi cand and e-bit exponent radix 2j on-line oating-point
complex-real multiplier unit is shown in Figure 5. The number
of individual module types utilized, the cost per module type,
and the total overall cost are summarized in Table II. Assuming
m = 24 and e = 8, the cost is 356 CLB slices. The on-line
delay is δ = 9.

TABLE II

COST OF RADIX 2j ON-LINE FLOATING-POINT COMPLEX-REAL

MULTIPLIER

Module Count CLB slices

ADDE 1 e

DSREC 2 24

BSD mult. (⊗) 3m
2

6m

BSD adder (3:1) m
2

4m

BSD adder (2:1) m
2

2m

MSREC 2 20

NORM 1 2e

Total cost 12m + 3e + 44

Fig. 5. Radix 2j on-line oating-point complex-real multiplier

Three approaches for the design of the CHT are compared:
(i) a radix 2j approach which uses a combination of radix 2j
on-line arithmetic modules for complex inputs and radix 2 on-
line arithmetic modules for real inputs; (ii) a radix 2 approach
which strictly uses radix 2 on-line arithmetic modules; and
(iii) a radix 2 parallel approach which uses the Xilinx library
of oating-point parallel arithmetic operators [8]. The results
in terms of cost and latency are shown next.

The cost of the proposed radix 2j on-line network, and the
alternative radix 2 on-line network and the radix 2 parallel
network are compared for the implementation of CHT unit
which operates on a k-digit vector x, for various values of k.
In each case, we assume oating-point operands consisting of

24-digit (or bit) signi cands and 8-bit exponents, as shown in
Table III.

TABLE III

COMPARISON OF CLB COSTS FOR CHT

k Radix 2j Radix 2 Radix 2

on-line on-line parallel

32 9820 13468 32693

64 19228 26524 64117

128 38044 52636 126965

256 75676 104860 252661

The delay of the proposed radix 2j on-line network, and
the alternative radix 2 on-line network and the radix 2 parallel
network are compared for the implementation of CHT unit
for various values of k. In each case, we assume oating-
point operands consisting of 24-digit (or bit) signi cands and
8-bit exponents, as shown in Table IV.

TABLE IV

COMPARISON OF CYCLE LATENCIES FOR CHT

k Radix 2j Radix 2 Radix 2

on-line on-line parallel

32 60 58 126

64 63 61 137

12 66 64 148

256 69 67 159

IV. CONCLUSION

We have demonstrated a new approach for the implemen-
tation of a CHT unit, based on using complex number on-
line arithmetic modules which adopt a redundant complex
number system (RCNS) for ef cient representation. Signi cant
improvement in cost in comparison to a radix 2 on-line
approach and a radix 2 parallel approach, as well as a signif-
icant reduction in latency in comparison to a radix 2 parallel
approach have been shown. This motivates the research into
other application to utilize complex on-line arithmetic.

REFERENCES

[1] T. Aoki, Y. Ohi, and T. Higuchi, “Redundant complex number arithmetic
for high-speed signal processing,” 1995 IEEE Workshop on VLSI Signal
Processing, Oct. 1995, pp. 523-532.

[2] K-L Chung and W-M Yan, ”The complex householder transform,” IEEE
transactions on signal processing, Vol. 45, no. 9, Sept. 1997, pp. 2374-
2376.

[3] M.D. Ercegovac and T. Lang, “Digital arithmetic,” Morgan Kaufmann
Publishers, 2004.

[4] A.S. Householder, ”Unitary triangularization of a nonsymmetric matrix”,
Journal of the ACM, 5 (4), 158, pp. 339-342.

[5] D.E. Knuth, “The art of computer programming,” Vol. 2, 1973.
[6] R. McIlhenny, “Complex number on-line arithmetic for recon gurable

hardware: algorithms, implementations, and applications,” Ph.D. Disser-
tation, University of California, Los Angeles, 2002.

[7] C.F.T. Tang, K.J.R Liu, S.F. Hsieh, and K. Yao, ”VLSI algorithms and
architectures for complex householder transformation with applications
to array processing,” University of Maryland, College Park, Technical
Report TR 91-84, 1991, pp. 1-36.

[8] Xilinx Corporation, “Xilinx Data Book,” 2004.

322

