
Interconnection Scheme for Networks of Online Modules

Pouya Dormiania, Miloš D. Ercegovacb

aElectrical Engineering Department, UCLA, Los Angeles, CA 90025, USA
bComputer Science Department, UCLA, Los Angeles, CA 90025, USA

ABSTRACT

In this paper we propose an interconnection scheme to compute any unfactored arithmetic expression as a network
of online modules. This is accomplished through mapping the expression to a doubly-linked hypercube network of
online units. The mapping algorithm1 guarantees a maximum dilation of 2, with unit load, and conjectures that
any arbitrary unfactored expression can be mapped to the proposed architecture with a small delay overhead.
The proposed architecture requires no form of reconfiguration to accomplish the mapping, providing us with an
efficient way to compute any network of online operations.

Keywords: Online arithmetic, expression evaluation, interconnection networks

1. INTRODUCTION

Arithmetic expressions are computational graphs with inherent operation dependencies which are known prior
to evaluation. Current microprocessor architectures compute expressions as a set of independent operations
with intermediate values. This evaluation method has been highly optimized over the years to achieve efficient
utilization of the execution unit. The merit of this approach is obviously its generality – the crux of microprocessor
architectures. On a processor with multiple execution units, the compiler schedules instructions to obtain the
maximum attainable parallelism, which is much less than the available degree of parallelism in large expressions.
When evaluating large expressions, many instructions need to be issued at a given cycle, requiring a complex
instruction issuing unit, an abundance of execution units, a large register file, and an equally large number of
register file read/write ports. As access demands increase, register file performance degrades in-turn degrading
instruction performance.

Use of knowledge regarding operation dependencies would help avoid intermediate register accesses by routing
data directly from one execution unit to the next. This type of data transfer can quickly become unwieldy even
for a small number of execution units when using conventional arithmetic with I/Os consisting of full precision
bit vectors. When performing arithmetic in a serial fashion, the number of I/O lines per execution unit are
precision independent, and carry a single digit at a time. The reduced I/O demands of serial arithmetic permits
an interconnection of a large number of execution units to realize the computational graph of a given expression.
However, different expressions have different computational graphs, and require a different interconnection of
execution units. The increase in latency due to digit- serial is mitigated by using online arithmetic which
allows overlapped execution of subexpressions2, 3 and by using a higher radix. In this paper we present an
interconnection scheme for online arithmetic execution units and the associated architecture to compute any
unfactored arithmetic expression – an arithmetic expression whose computational graph topology is a tree.

1.1. Online Arithmetic

We now describe a general model of online algorithms and their implementation.2 Consider an operation with
two m radix-r digit operands, x and y, and one result z. The input-output model is:

• In cycle j the result digit zj+1 is computed. Consequently the cycles are labeled from −δ, . . . , 0, 1, . . . ,m
so that in cycle j the operand digits xj+1+δ and yj+1+δ are received, output digit zj+1 is computed, and
output digit zj is delivered (Figure 1).

Further author information: (Send correspondence to M. Ercegovac, milos@cs.ucla.edu)
e-mail: P.D. pouya@seas.ucla.edu

Advanced Signal Processing Algorithms, Architectures, and Implementations XVI, edited by Franklin T. Luk,
Proc. of SPIE Vol. 6313, 631308, (2006) · 0277-786X/06/$15 · doi: 10.1117/12.680141

Proc. of SPIE Vol. 6313 631308-1

The algorithm consists of recurrences on numerical values. In each of the m + δ iterations, one digit of the
operands is introduced (for the last δ iterations the input digits are set to zero), an internal state w (also called
a residual) is updated, and one digit of the result is produced (zero for the first δ cycles. An additional cycle is
needed to deliver the last result digit.

The principal parts of an online algorithm are

• The recurrence on the residual (internal state) w[j] has the following form

w[j + 1] = G(w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j], zj+1) (1)

for −δ ≤ j ≤ m − 1 where

x[j] =
j+δ∑
i=1

xir
−i, y[j] =

j+δ∑
i=1

yir
−i, z[j] =

j∑
i=1

zir
−i (2)

are the on-line forms of the operands and the result, respectively.

The scaled residual is defined as
w[j] = rj(G(f(x[j], y[j]) − z[j])) (3)

with the initial condition w[−δ] = 0.

A generic form of the recurrence on w[j] is

w[j + 1] = rw[j] + rj+1(G(f(x[j + 1], y[j + 1]) − z[j + 1]) − G(f(x[j], y[j]) − z[j]))) (4)

• The result digit selection obtained as

zj+1 = F (w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j]) (5)

Calling x[j], y[j] and z[j] the numerical values of the corresponding signals when the representation consist
of the first j + δ digits for the operands and j digits for the result, iteration j is described by

x[j + 1] = (x[j], xj+1+δ)
y[j + 1] = (y[j], yj+1+δ)
zj+1 = F (w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j])
z[j + 1] = (z[j,], zj+1)
w[j + 1] = G(w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j], zj+1)

(6)

Figure 1 depicts the implementation model.

The execution of an online algorithm corresponds to m + δ iterations of the recurrence, each corresponding
to one clock cycle. The iterations (cycles) are labeled from −δ to m − 1. One digit of each input is introduced
during cycles −δ to m − 1 − δ and digits value 0 thereafter. The result digits are 0 for cycles −δ to −1 and
z1 is produced in cycle 0. Finally, the result digit zj is output in cycle j. Consequently, one additional cycle is
required to output zm.

For an operation with two operands x and y and one output z the execution in cycle j consists of the following
actions :

• Input xj+1+δ and yj+1+δ.

• Update x[j + 1] = (x[j], xj+1+δ) and y[j + 1] = (y[j], yj+1+δ) by appending the input digits.

• Compute v[j] = rw[j] + H1 (rw[j] is the shifted residual and H1 is independent of the result digit being
produced; its form depends on the operation performed.

Proc. of SPIE Vol. 6313 631308-2

xj+1+δ

yj+1+δ

F,G

W Z

y[j] x[j]

w[j + 1] zj+1

w[j] z[j]

zj+1

zj

X, Y

Online Module (OLM)

Figure 1. Model of online algorithm implementation (Adapted from 2)

• Determine zj+1 using the selection function.

• In some algorithms, update z[j + 1] = (z[j], zj+1+δ) by appending the result digits.

• Compute the next residual w[j + 1] = v[j] + H2(zj+1)

• Digit zj is output.

The left-to-right mode of computation requires a flexibility in computing output digits on the basis of partial
information about inputs. This is achieved by the use of redundancy in the number representation system, which
allows several representations of a given value.

2. METHODOLOGY

In this section we present our problem statement, justification for its applicability and solution methodology.

Given a set of large expressions which require highly repetitive computation, it is beneficial to optimize the
computation of every expression to yield the smallest delay. As the size, number of expressions, and number of
times expressions are computed increase, this optimization could yield noteworthy performance improvements.
Our objective is to present a methodology which improves the delay of computing large expressions with a
high number of repetitions. We consider the case in which expressions have a computational graph with a tree
topology.

Consider a set of expressions SE which comprises all expressions to be computed in a repetitive manner.
We assume that the computational graph of any expression E ∈ SE has n nodes if the expression contains n
operators. If an expression has a structure which is known prior to execution, this information can be used to
optimize away access to intermediate values. For example, the computational graph for expression (7) is shown
in Fig. 2(a).

E = (x0 + x1 + x2)(x3 + x4)(x5x6 + x7x8) (7)

In a microprocessor approach, this computational graph could be computed so that very few registers are
required as shown in Fig. 2(b); however, this approach does not exploit any parallelism. The computation could
also be performed to exploit all available parallelism as shown in Fig. 2(c)–instructions grouped together can

Proc. of SPIE Vol. 6313 631308-3

x0

x1 x2

x3 x4 x5 x6 x7 x8

×+

+

+ ×

+×

×

(a)

r1 ← x1 + x2

r2 ← x0 + r1

r1 ← x3 + x4

r2 ← r2 × r1

r1 ← x5 × x6

r3 ← x7 × x8

r1 ← r1 + r3

r1 ← r1 × r2

(b)

r1 ← x1 + x2

r2 ← x0 + r1

r3 ← x3 + x4

r4 ← x5 × x6

r5 ← x7 × x8

r2 ← r2 × r3

r3 ← r4 + r5

r2 ← r2 × r3

(c)

x1 x2

x3 x4x0

x7 x8

x5 x6

+

×

×

×

×

+

+

+

(d)

Figure 2. (a) Computational graph for Eq. 7 (b) Instruction sequence to compute the expression requiring very few reg-
isters (c) Instruction sequence to achieve maximum available computational parallelism–all instructions grouped together
can be issued simultaneously. (d) Interconnection of serial arithmetic operators–all connections in the schmematic are
serial.

be issued simultaneously. For large expressions, this approach requires a large number of registers with many
read/write ports.

We propose that the computational graph be realized as an interconnection of online arithmetic modules–
shown in Fig. 2(d). If |SE | = 1, then the optimum interconnection scheme is the direct connection of operations
as specified by dependencies in the computational graph. In this case, since a single large expression is computed
repetitively, the interconnection of online modules is static at runtime, and could be optimized for minimum delay.
If the expression changes infrequently, then a reconfigurable platform could be utilized to implement the new
expression; however, if SE contains a large number of expressions which need to be computed interchangeably
then reconfiguration is far too slow and a more general approach is required.

A general approach to compute arbitrary expressions interchangeably with little overhead is presented. Our
approach relates to the paradigm of parallel computing platforms which simulate problems with given compu-
tational topologies within a general interconnection network of processing elements. We propose a hypercube
of online processing nodes (OPN), on which we simulate any computational graph with a binary tree topology.
We examine different tradeoffs in our proposed architecture such as the choice of radix and number of execution
units.

3. ARCHITECTURE

A degree n hypercube network Hn consists of 2n nodes labeled n0, n1, . . . , n2n−1. A node ni whose index i has
binary representation i2 has edges to all nodes nj if the hamming distance (h) between i2 and j2 is one - that is
h(i2, j2) = h(ni, nj) = 1. We define a doubly-linked hypercube H2

n as a hypercube which has two edges between
any nodes ni and nj when h(ni, nj) = 1 . The interconnection network of choice for OPNs is the doubly-linked
hypercube.

If the set of expressions SE contains an operation mix SO, then each OPN is capable of performing all
operations in So. An OPN has 2n I/O lines to neighboring nodes that carry a single digit at a time. Each
digit in a radix-r redundant number system has an associated encoding which requires wd bits–in radix 2 online
arithmetic using a Borrow Save Digit (BSD) encoding (1 → 01,−1 → 10, 0 → 00 or 11), two bits are required
to encode digits (wd = 2). This implies that an OPN in H2

n using radix-2 online arithmetic with BSD encoding
requires 4n interconnects.

An OPN can perform a binary operation or a “feed-through”–where a single digit stream is routed through
the OPN to another node. A routing box in the OPN selects two I/O digit streams as operands (opi1, opi2),
and a single I/O onto which the result digit stream is output (opo) with an optional feed-through from fti to
fto as shown in Fig. 3(b). I/O paths must be chosen in the routing box such that digit streams are routed
appropriately.

Proc. of SPIE Vol. 6313 631308-4

ctrl.

Routing Box

OLM

(a)

Ctrl.

. . .

opi1

opi2

fti
opo fto

OLM
Routing Box

(b)

Ctrl.

. . .

opi1

opi2

fti
opo fto

OLM

0 4 5 6 15

6
15 5

4

0

(c)

Cost

Area
(

2wdn
3

)2
+ o(n2)

I/Os / OPN (digits) 2n
Interconnects / OPN (bits) 2wdn
Max. interconnect length n/3 + o(n)

Operation Online Delay

Addition 2(r = 2), 1(r ≥ 4)
Multiplication 3(r = 2), 2(r = 4)
Division 4
Square root 4
Max/Min 0

(d)

Figure 3. (a) Example architecture with n = 8 consisting of 256 OPNs. Wires in the hypercube layout represent two
digit I/O paths. For a radix r = 2 implementation with Borrow Save Digit (BSD) encoding, each edge represents four
physical wires. (b) Each OPN node has 2n digit connections, shown as bidirectional links to the routing box. A maximum
of five links will be active at any point in time. (c) An instance of the routing box for H2

8 where the OPN has 16 digit
links. The inputs of the OPN are chosen via opi1 = 0 and opi2 = 4 and the output is driven on opo = 5. This particular
node also routes link 6 to link 15 as shown with setting fti = 6 and fto = 15.

Proc. of SPIE Vol. 6313 631308-5

The cost of implementation scales with the number of OPNs in the interconnection network in addition to
the choice of radix which is used to perform serial arithmetic. The architecture’s parameterized costs are shown
in table 3(d). Layout costs are derived from [4] in which an efficient layout of the hypercube is presented.

The performance of evaluation in terms of cycles is dependent on the number of levels present in the network
of online modules. Depending on the operation being performed at each node, a given online delay δ is in
effect–examples of some online delays are shown in Fig. 3(d). Let ∆ denote the network online delay as a single
entity. Given all paths r = p0, . . . , pj = q, where r is the root of the computational graph (CG), and q is a leaf
node, the network online delay is given by (8). We define the total number of cycles required to compute CG as
the network delay D.

∆ = max
q∈CG

(
j∑

i=0

δ(pi)

)
(8)

D = ∆ + m (9)

The network delay is dependent on the type of expression being solved, for example, the fastest network is a
min/max network since each node has an online delay of zero ⇒ ∆ = 0. Note that D does not take into account
additional delays introduced by the mapping algorithm. The network delay is redefined in section to account for
overhead delays associated with mapping characteristics.

4. MAPPING ALGORITHM

We review an algorithm here presented by Wagner1 which embeds all binary trees in the Hypercube. This is
performed in a two step process: (1) converting any arbitrary rooted binary tree with an even number of nodes to
a strongly balanced tree sbT , and (2) finding a spanning of sbT in the hypercube. It is conjectured, that strongly
balanced trees span the hypercube – no proof was presented but no counter examples were found. Part two of
the algorithm labels vertices of the sbT obtained from part one to nodes in the hypercube. Characterization of
the mapping is therefore entirely dependent on part one of the algorithm which is reviewed in Section 4.1. The
reader is referred to [1] for part two of the algorithm.

The guest graph, an arbitrary rooted binary tree, will be embedded into the host graph, the hypercube. Given
a guest graph A = (VA, EA) and a host graph B = (VB , EB), an embedding is defined as the mapping defined by
φ : VA → VB . Characteristics of the mapping algorithm which are relied upon heavily are the maximum dilation,
congestion and load of the embedding which are defined as follows. (Dilation) Given an edge (vA1, vA2) ∈ EA

where vA1, vA2 ∈ VA, the dilation of an embedding φ is defined as the distance between the mapped nodes in
the host graph, which is given by h(φ(vA1), φ(vA2)).(Load) The load of an embedding is the maximum number
of nodes in the guest graph which map to a node in the host graph.(Congestion) The congestion of an edge is
the number of paths in the guest graph which route through the edge in question within the host graph.

Converting an arbitrary binary tree to a strongly balanced tree causes some edges in the tree to be dilated.
The maximum dilation of this embedding is two, hence no edge in the original binary tree will span more than
two edges in sbT . If the routing algorithm in the hypercube can be chosen at runtime, each edge in the hypercube
would have congestion at most two – two data paths occur on the same edge. These characteristics allow us
to use the doubly-connected hypercube interconnection network to embed any expression. A doubly connected
hypercube of degree three H2

3 is shown in Fig. 4(a).

4.1. Strongly Balanced Trees

The algorithm reviewed requires that the binary tree T be rooted and have an even number of nodes – other
cases are covered by adding a temporary node which is removed after the mapping. A strongly balanced tree
sbT is a tree which contains a perfect matching. A matching M is a set of edges in T such that every node in
the tree is the endpoint of exactly one edge in the matching. Consider the following two examples, shown in
Fig. 4(d) and Fig. 4(e).

Proc. of SPIE Vol. 6313 631308-6

(a)

+

+

+

×

×

×

+

×

3

2
1

(b)

××

+×

× +

+ +

(c)

a b c
1 2

(d)

a

b

c

d

e

f

1 3 5

2 4

(e)

Figure 4. (a) A doubly-connected degree three hypercube: H2
3 (b) Strongly balanced tree of the computational graph

shown in Fig. 2(a). The light edge signifies that the result of operation 1 routes through node 2 to reach operation 3. (c)
A spanning of the strongly balanced tree in H2

3 . (d) No perfect matching exists. Node b is shared by edges 1 and 2. (e)
Perfect matching shown with thicker gray edges.

Edges in T are labeled even or odd to signify that removing the edge results in two components with an even
or odd number of nodes respectively. Since T has an even number of nodes, several relationships can be deduced
from the parity of edges.

Matching = {odd edges}: Let T be a tree with an even number of vertices. If T contains a perfect matching
M then M equals the set of odd edges in the tree.

Equivalence relationships: Given T is a tree with an even number of nodes the following properties are
equivalent: (1) T is strongly balanced. (2) Every vertex is incident to exactly one odd edge. (3) The
number of odd edges is one more than the number of even edges. (4) Removing an even edge disconnects
T into two strongly balanced trees.

4.2. Converting trees to strongly balanced trees

Two types of nodes can be identified in the original binary tree T : 3-0 nodes, which refer to nodes that contain
3 odd edges, and no even edges, and 1-x nodes which refer to any node with a single odd edge, and x ∈ {0, 1, 2}
even edges. It is evident that both of these types of nodes preserve the condition that T has an even number
of nodes. Also notice that no such thing as a 2-x node (two odd edges and x even edges) can exist, as it would
contradict the even node count of T .

Since every vertex of an sbT is incident to exactly one odd edge, then converting all 3-0 nodes in T to 1-x
nodes would yield sbT . All 3-0 nodes must be converted to 1-x nodes, and all 1-x nodes must be preserved.
Consider a path u → v from u to v in T : u = u0, u1, u2, . . . , uk = v, such that, (1) u is an ancestor of v (2) u is
a 3-0 node and v is a leaf or a node of degree two (3) the path does not contain two consecutive even edges.

shift(u → v) performs shifts along the path {u = u0, u1, . . . , uk = v} such that the resulting path contains no
3-0 nodes. The shift operation is shown in Fig. 5(b). The shift operation dilates edges and introduces congested
edges: After shifting, edge {s, ui} is dilated and comprises of two edges {s, ui}, {ui, ui+1} and edge {ui, ui+1}
has congestion 2.

ui

ui+1
s

o

o o

(a)

ui

ui+1

s

o

o

e

(b)

ui

ui+1
s

o

e e
ui

ui+1

s

o

e

e

(c)

Figure 5. Given Path u → v containing nodes ui and ui+1 (a) ui: a 3-0 node. (b) Resulting ui after shift is a 1-x node.
(c) Performing a shift on node ui where ui is a 1-x node preserves ui as a 1-x node. Note that only 1-2 nodes will be
transformed in a shift; if node ui was a 1-1 node, then ui+1 would have no sibling.

Proc. of SPIE Vol. 6313 631308-7

Algorithm 4.1: shift(u → v)

comment: sibling(x) returns the sibling of node x or NIL

for i ← 0 to k − 1

do

⎧⎪⎪⎨
⎪⎪⎩

sib ← sibling(ui+1)
if sib �= NIL

do
{

remove edge {ui, sib}
add edge {ui+1, sib}

The shift() algorithm works by transforming all nodes on a path; 3-0 nodes are converted to 1-x nodes and
1-x nodes are preserved. If edge {ui, s} is odd and node ui is a 3-0 node, then shifting node s to the child ui+1

changes the parity of edge {ui, ui+1} to even as both components rooted at ui+1 and s are odd, as shown in
Fig. 5(a) and 5(b). Preservation of 1-x nodes is shown in Fig. 5 The tree T is converted to sbT by performing
shift(u → v) on all paths u → v in T such that u is a 3-0 node and v is a leaf or vertex with degree two. The
ShiftPaths() traverses T recursively, performing Shift() on all such paths. ShiftPaths() takes as parameters:
r, the root of tree T , tree T , and a copy of T on which all transformations take place. When ShiftPaths()
returns, the copy of T will be sbT .

Algorithm 4.2: ShiftPaths(r, T, sbT)

procedure GetPath(vertex u)
path ← {}, done ← False
while not done

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

path ← {path, u}
if u is a leaf
then

{
return path

c1, c2 ← children(u)
if {u, c1} is odd
then

{
nextNode ← c1

else if {u, c2} is even
then

{
nextNode ← c2

else
{
nextNode ← chose nextNode randomly from {c1, c2}

u ← nextNode

main
if r is a leaf
then return

else

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

path ← GetPath(r)
u ← first 3-0 node in path, else NIL
if u �= NIL
then Shift(path) on graph sbT

for all v in V = { siblings of all nodes on path }
do ShiftPaths(v, T, sbT)

4.3. Network Delay

The network delay D presented in Section 3 did not take into account dilated edges which route through a sibling
to the predecessor. These routes have an additional cycle of delay, which changes the network delay of the sbT
resulting from T . Consider the dilated edge {s, ui} shown in Fig. 5(b): if ui was the root of the expression, then
the original delay (see Fig. 5(a)) from sibling s to ui is given by δ(s) + δ(ui). However, once the edge is dilated,

Proc. of SPIE Vol. 6313 631308-8

the new delay is given by δ(s) + 1 + δ(ui). In a similar manner through which the network online delay was
presented in Section 3, an approach to finding the network online delay, and network delay of sbT is presented
here.

Consider a path from the root of sbT to a leaf given by r = p0, p1, p2,pk−1 = q. The network online delay
of this path is given by eq. (11), and thus the network delay of the sbT resulting from T is given by eq. (12).

δd(pi) =
{

1 , if pi routes pi+1 → pi−1 on the path
δ(pi) , otherwise (10)

∆ = δ(p0) + max
q∈CG

(
k−2∑
i=1

δd(pi) + δ(q)

)
(11)

D = ∆ + m (12)

An example of a 6 level full binary tree T (with an added node to make its node count even) and its associated
sbT are shown in Fig. 6(a) and Fig. 6(b). Assuming that each node has the same online delay δ, the paths from
which the network online delays of T and sbT are obtained is shown in Fig. 6(c) and Fig. 6(d) respectively. Note
that the extra node added to T to obtain an even node count is removed in sbT (the node must be disregarded
after finding a labeling of sbT in Hn).

(a) (b)

δ

δ

δ

δ

δ

δ

(c) ∆ = 6δ

δ

δ

δ

δ

δ

δ

1

1

1

1

(d) ∆ = 6δ + 4

Figure 6. (a) A full 6 level tree with an added extra node to satisfy the even node count requirement. (b) The
corresponding sbT after ShiftPaths()is called on the root of the tree. (c) a path with largest online delay in the original
tree (d) a path with the largest online delay in sbT . There is a 4 cycle overhead in the network online delay because of
dilated edges introduced in the mapping.

5. DISCUSSION

In this section we discuss the key features and tradeoffs of our approach. We present a comparison between our
approach to a commonly used approach utilizing h-trees.

H-trees are a layout strategy in which a full binary tree is realized through a series of “H” structures as shown
in Fig. 7(c). An h-tree could be realized on an array of units as shown in Fig. 7(b). In a 16 × 16 array of units,

Proc. of SPIE Vol. 6313 631308-9

an h-tree with a maximum of 7 levels can be realized, resulting in a maximum node utilization of 127/256. Note
that this node utilization is the maximum and only occurs when a full binary tree with 7 levels is simulated on
the interconnection of nodes. If an array is not required, then almost the same number of nodes (one less) can
be used to construct an h-tree with an extra level as shown in Fig. 7(c). This gains an extra level in addition to
making the maximum possible node utilization 255/255.

(a) (b) (c)

Figure 7. (a) An array of online arithmetic units with a simplistic approach to simulating a tree5; maximum node
utilization: 31/256 (b) An array of online arithmetic units simulating an h-tree; maximum node utilization: 127/256. (c)
An h-tree of online arithmetic units; maximum node utilization: 255/255

In the h-tree approach a simple observation is used to realize all interconnections of trees: all binary trees
with maximum depth db span the full binary tree with depth df when db ≤ df . That is, given a full binary tree
with depth df , all binary trees with depth smaller than or equal to df are contained in the full binary tree. For
example, consider the tree shown in Fig. 8(a) and its spanning in the h-tree.

The fundamental problem with the h-tree approach is that only trees with depth less than or equal to the
h-tree span the interconnection of nodes. This depth constraint can cause severe underutilization of execution
units in addition to breaking the chain of online operations. Consider the tree and its attempted spanning in
the h-tree as shown in Fig. 8(b). Even though the tree requires much fewer execution units than available, the
depth of the tree can not be accommodated by the h-tree forcing the expression to be computed as two separate
online chains–the black dots on the right hand side denote the nodes which could not be mapped into the h-tree.
When computing the expression as two online chains, the overall delay of computing the expression is given by
∆1 + ∆2 + 2m where ∆1 and ∆2 are the network online delays of the first and second online chains respectively.
However, computing the expression as a single online chain has delay ∆1 + ∆2 + m; therefore, it is critical to
avoid breaking the online chain. However, the depth constraint of h-trees forces breaking the online chain every
time the depth of the h-tree is exceeded.

The depth constraint of h-trees in the spanning of subtrees is an inappropriate constraint as the fundamental
constraint of computability should be the availability of execution units. In our proposed approach the only

(a) (b)

Figure 8. (a) Mapping of shown CG in the h-tree. (b) Attempted mapping of shown CG in the h-tree–unsuccessful due
to depth constraint.

Proc. of SPIE Vol. 6313 631308-10

x0 x1

x2 x3

x4

x6

x5

x8

×

++

×

+×

×

+

x7

(a) (b) (c) (d)

Figure 9. (a) The computational graph (b) Attempted mapping to h-tree (c) Successful mapping to h-tree (d) Mapping
to proposed interconnection network.

constraint in simulating trees within the doubly-linked hypercube network is the number of available execution
units–our algorithm is resource constrained. This means that we will always achieve 100% utilization of resources
if an expression is large enough to require all OPN nodes. For example, consider an expression requiring 235
operations with any arbitrary tree structure. Our approach can embed this expression into H2

8 leaving 21 nodes
unused as the expression does not require all 256 resources. If the expression required all 256 nodes, then all
256 nodes could be allocated. If the expression required more nodes than available, then the expression would
have to be partitioned into smaller subexpressions with resource requirements less than or equal to the available
number of resources.

For example, consider the expression E = x0x1((x2+x3)x4+(x5+x6+x7)x8) whose CG is shown in Fig. 9(a).
Mappings to the h-tree and our proposed interconnection of OPNs is shown in Fig. 9(b), Fig. 9(c) and Fig. 9(d).

Another important property of these interconnection schemes is their ability to pack smaller trees. Consider
a scenario where several smaller expressions are to be evaluated; if these expressions can be “packed” into the
interconnection of online arithmetic units then they could be evaluated simultaneously.

The h-tree was not very suitable for a single expression to begin with, which means that it would be at
best as inefficient or worse at packing smaller trees. When using an h-tree, the full binary tree can be viewed
as a number of smaller full binary trees on which the expressions can be evaluated. The inefficiency of depth
restricted spanning is once again seen on the smaller sub-h-trees of the interconnection network. The inefficiency
of spannings in sub-h-trees is aggregated to yield an inefficient packing.

In our approach, a larger tree could be constructed from the smaller trees of expressions to be evaluated as
shown in Fig. 10. The resulting tree is mapped to the interconnection of OPN nodes and a labeling of all vertices
is obtained. The large tree can then be dissected back to the original expressions to be evaluated. Notice that
after adding an edge between a leaf and the root of another tree (e.g. Ei and Et) the leaf node has no siblings.
This means that Shift() does not affect the leaf node, leaving the two trees distinct after mapping. Once the
large tree is mapped, each original smaller expression’s result is obtained at the root of the appropriate subtree.

It is difficult to contrast the efficiency of h-trees and our approach in general, however, a fair but skeptical
analysis would be to analyze how much worse our approach performs what the h-tree does best. The h-tree has
the highest resource utilization for a full binary tree with the same depth as the h-tree–which we denote as l. If
the online delay of all nodes is the same (δ), then the h-tree can perform the associated computation in lδ + m
cycles, where m is the precision of the computation. In our approach, since there are l levels and l − 1 edges
from the root to a leaf, then lδ + q + m cycles are required, where q ≤ l − 1 and depends on the number of
dilated edges on the path. This additional delay is not drastic considering that l is logarithmic with respect to
the number of operations performed.

The tradeoff in evaluating expressions using the proposed interconnection scheme is the additional cycles
of network online delay introduced by dilated edges in sbT . The cost of implementation for the proposed
interconnection scheme is also higher than an h-tree with an equivalent number of execution units. This cost is
attributed to the additional interconnects required by the doubly linked hypercube.

Proc. of SPIE Vol. 6313 631308-11

Ei

Ej
Ek

Et

. . .

. . .

Figure 10. Forming a larger tree from trees of smaller expressions creates an efficient packing of the smaller expressions.
After mapping of the large expression, each subexpression’s result is obtained from the node with label corresponding to
the root of the subexpression.

6. SUMMARY

In this paper we proposed an interconnection scheme for online arithmetic operators which facilitates evaluation of
all arithmetic expressions whose computational graph has a tree topology. Our approach achieves high utilization
of execution units to exploit the most parallelism from a given expression with little overhead. For future work
we aim to create a hardware implementation of proposed architecture through which detailed resource/delay
costs can be extracted, and contrasted to existing approaches. We also plan to investigate the interplay between
the choice of radix and the associated hardware cost/delay.

REFERENCES
1. Alan S. Wagner, ”Embedding All Binary Trees in the Hypercube”, Journal of Parallel and Distributed

Computing, Vol. 18, pp. 33–43, 1993.
2. M.D. Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann Publishers, San Francisco, 2004.
3. D. Tullsen and M.D. Ercegovac. Design and implementation of an on-line algorithm. In Proc. SPIE Conference

on Real-Time Signal Processing, San Diego, August 1986.
4. C. Yeh, E. A. Varvarigos, B. Parhami, ”Efficient VLSI Layouts of Hypercubic Networks”,Proceedings of

Frontiers ’99: The 7th Symposium on the Frontiers of Massively Parallel Computation, pp. 98-105, February
21-25, 1999.

5. M. F. Aguilar, ”Conception et Simulation d’une Machine Massivement Parallèle en Grande Précision”, PhD
thesis, L’Ecole Normale Supérieure de Lyon, France, 1994.

Proc. of SPIE Vol. 6313 631308-12

