
A Linear-System Operator based Scheme for Evaluation of Multinomials

Pavan Adharapurapu and Miloš Ercegovac
University of California, Los Angeles

Computer Science Department
4732 Boelter Hall, Los Angeles, CA 90095, USA

{pavan, milos}@cs.ucla.edu

Abstract

We present a radix-2 online computational scheme for
evaluating multinomials in a fixed-point number represen-
tation system. Its main advantage is that it can adapt to
any evaluation graph representing the multinomial. Evalu-
ation graphs are efficient representations of multinomials in
a factored form. The proposed scheme maps subgraphs of
the evaluation graph using linear-system operators. These
operators transform the expressions represented by the sub-
graphs into systems of linear equations. The linear equa-
tions are then solved in an online, most-significant-digit-
first fashion. The scheme produces, after an initial delay,
one output digit per iteration for inputs within range. The
iteration time is equal to the sum of the delays of a redun-
dant adder, multiplexer, register and a selection unit and is
independent of the size of the multinomial and the preci-
sion of the inputs/outputs. The initial delay is proportional
to the diameter of the evaluation graph and the maximum
number of children of any addition node in the graph. The
proposed method lends itself to implementation using sim-
ple, highly regular hardware with serial interconnections
between modules.

1 Introduction

A multinomial is a (non-recursive) mathematical expres-
sion in several variables consisting of a sum of product
terms. Our scheme, however, can also handle the so-called
monomials (expressions consisting of just a single product
term) and unexpanded multinomials (where each product
term could contain some summation raised to a power). Fol-
lowing is an example of a multinomial in three variables
which we will use as a running example in this paper.

M(x, y, z) = x + y +
1

8
x3y2 +

1

16
xyz4 +

1

9
x6yz (1)

While such multinomial evaluations are typically done

using software on a general-purpose processor, there are
situations where custom hardware implementation maybe
called for. An example of this — and in fact, the main mo-
tivation for the current research — is the Bayesian Network
Multinomial (BNM) evaluation. Darwiche [4] recently pro-
posed a scheme where Bayesian Networks [9] are repre-
sented using a characteristic multinomial and the most im-
portant operation done on a Bayesian Network - probabilis-
tic inference - requires evaluation of this multinomial. This
example is relevant to our research since BNMs are expo-
nential in size and many real-time Bayesian Networks can-
not be practically solved on a general-purpose processor.

One of the chief advantages of the proposed method is
that its starting point is any evaluation graph representing
the multinomial. An evaluation graph, or E-graph for short,
is a rooted directed acyclic graph (DAG) whose nodes are
represented by the arithmetic operations of addition and
multiplication. The leaves of the E-graph are the input
variables and the constant coefficients of the multinomial.
Symbolic evaluation of the E-graph produces the same ex-
pression as the multinomial it represents. E-graphs are ef-
ficient representations of multinomials in that they express
the multinomial in a factored form.

Define the size of an E-graph as the total number of arcs
contained in the graph minus the number of nodes in the
E-graph. A node of an E-graph with c children represents
(c − 1) operations to be performed. Thus, the size of an E-
graph represents the total number of arithmetic operations
(of all kinds) to be performed to evaluate the expression rep-
resented by the E-graph. A multinomial can have many E-
graphs. An E-graph of size 16 for the multinomial (1) is
shown in Fig. 1.

The paper does not consider the problem of finding opti-
mal E-graphs for multinomials. Finding small E-graphs for
arbitrary multinomials is an open problem and is actively
studied in the field of Algebraic Complexity Theory [2, 10].
Finding small E-graphs for BNMs in particular is dealt by
Darwiche [4]. Our method, thus, benefits from any ad-
vances in these fields.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

z

y

+

x

1

16

*

z z z

*
1

9

x

*

x
x

+

*

+

*

x
y

1

8 y

*

+

Figure 1. An E-graph of size 16 for M

The method proposed in this paper, named MOLE
(Multinomial On-Line Evaluation), mechanizes the proce-
dure of building an arithmetic circuit (a hardware imple-
mentation consisting of interconnected arithmetic modules)
starting from the E-graph of a multinomial. It consists of
the following two steps:

1. Application of various linear-system operators to an E-
graph representing a multinomial to convert it into a
network of linear systems, and

2. Solving of the linear systems in an online fashion with
a cycle time independent of the precision [5, 6].

A linear-system operator (LSO) transforms a subgraph
of an E-graph into an equivalent linear system. By equiva-
lence, we mean that one of the unknowns of the linear sys-
tem (typically the unknown whose index is zero) evaluates
to the same value (or a power-of-two scaled value) as the
expression represented by the subgraph [5].

The rest of the paper is organized in the following way.
Section 2 introduces the concept of linear-system operators
and the various types of such operators defined for an E-
graph. Section 3 is the central part of the paper which details
the mapping of an E-graph into a network of linear systems.
In section 4, we show when and how scaling of input pa-
rameters of a multinomial needs to be performed so that the
MOLE method can be applied. In section 5, we compute the
delay-area costs of the MOLE method and make compar-
isons with a conventional approach based on multiply and
add units. Section 6 concludes the paper. Appendix A lists
the pseudo code used to describe the algorithms developed
in the paper.

2 Linear-System Operators (LSO)

Linear-system operators (LSO) map (possibly compos-
ite) arithmetic operations to equivalent linear systems. In
the context of an E-graph, an LSO maps a subgraph (which

is a graph representation of an arithmetic operation) into a
linear system. An important requirement while considering
an E-graph in this context, is to come up with a suitable set
of LSOs for it. An E-graph, as defined previously, contains
the operations of multi-operand addition and multi-operand
multiplication as its nodes. Thus, LSOs for these two oper-
ations seem an obvious choice. In what follows, in addition
to above two LSOs, we also define an LSO which maps a
composite operation consisting of a combination of addi-
tions and multiplications.

2.1 Multiplication LSO (MLSO)

The Multiplication Linear-System Operator (MLSO)
maps a multi-operand multiplication operation to an equiv-
alent linear system.

Consider the product p and its corresponding node in an
E-graph shown in Fig. 2.

p = λ0λ1λ2

*

λ1
λ2λ0

Figure 2. A product and its corresponding
node in an E-graph

Now, consider the following linear system L : Ay = b:

1 −λ0 0

0 1 −λ1

0 0 1

y0

y1

y2

 =

 0

0
λ2

 (2)

It is easy to see that solving for y0 yields p. Thus, the
linear system L is equivalent to the product p.

2.2 Addition LSO (ALSO)

Consider a summation of three terms and its correspond-
ing node in an E-graph shown in Fig. 3.

+
y = θ0 + θ1 + θ2 θ0 θ2θ1

Figure 3. A summation and its corresponding
node in an E-graph

It is not possible to map it to a linear system whose value
is exactly equal to the sum y and which also satisfies the
convergence requirements of the algorithm (presented in

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

section 2.4) to solve linear systems. We choose to use the
following linear system for a sum1:

1 − 1

2 0
0 1 − 1

2
0 0 1

y0

y1

y2

 =

1
4 · θ0
1
2 · θ1

θ2

 (3)

Solving for y0 yields 1
4 ·(θ0+θ1+θ2) i.e., one-fourth the

value of the actual sum. This means that we need to discard
the first two most significant digits of the output. It also
means that any implementation of the above ALSO needs to
run for two extra cycles to produce all the significant digits
of the output.

In general, for a summation consisting of n terms, the
ALSO produces a value differing from the actual sum by a
factor of 2−(n−1). Consequently, we need to run the opera-
tor for (n − 1) cycles more than the required precision.

We will see later that for solving a linear system like (3),
all matrix elements should be available at the same time.
In the RHS matrix of (3), θ1 and θ0 are scaled by 1/2 and
1/4, respectively. This means that solving of the linear sys-
tem (3) can start as soon as θ2 is available as long as θ1

and θ0 are available within one and two additional cycles,
respectively. When an ALSO is used as part of a larger E-
graph, it takes its inputs from the lower levels. In such a
scenario, it is advisable that the sum be mapped so that the
elements of the RHS matrix of the ALSO are arranged in
decreasing order of production times. This rearrangement
is possible since addition is a commutative operation.

2.3 Polynomial LSO (PLSO)

This is the final and the most “powerful” LSO we will
define for an E-graph. Unlike the previous two LSOs which
deal with individual operations, this LSO deals with a com-
posite operation consisting of a combination of addition and
multiplication operations similar to those involved in ex-
pressing a polynomial.

Consider the subgraph depicted in Fig. 4. It can, in gen-
eral, consist of a string of alternating addition and multipli-
cation nodes each having an arbitrary number of children
but at the most one parent. Clearly, any similar string of
non-alternating addition and multiplication nodes is equiv-
alent to that depicted in Fig. 4 since two successive nodes
of the same kind can always be merged. In the figure, the
values for all the children of any node are available at the
same time.

We define a Polynomial Linear-System Operator (PLSO)
for this computation which maps it to a linear system. The
PLSO mapping is, in a way, a combination of the MLSO
and ALSO. The mapping is presented in (4):

1The reader can try other approaches, but the linear system presented
here gives the shortest delay.

+ λ0λ1(θ3 + θ4)

+

*

+

θ3 θ4

θ0

θ1
θ2

λ0 λ1

y = θ0 + θ1 + θ2

Figure 4. A string of + and * nodes and the
expression it represents

1 − 1
2 0 0 0 0

0 1 − 1
2 0 0 0

0 0 1 −λ0 0 0
0 0 0 1 −λ1 0
0 0 0 0 1 − 1

2
0 0 0 0 0 1

y0

y1

y2

y3

y5

y6

=

1
8 · θ0
1
4 · θ1
1
2 · θ2

0
1
2 θ3

θ4

(4)

As can be seen from the mapping, we map the multipli-
cation node as in MLSO, except that we leave out one of the
operands (λ0). Similarly, we map the addition node like in
ALSO but leave out one of the operands (θ2). We “link” the
two mappings by combining the above left out operands in
a single multiply-then-add operation (extract the expression
for y2 in (4)). Note that for mapping the second addition
node (the one at the higher level), the RHS matrix elements
use different scaling factors than those used in an ALSO.
This is because the output of the first addition node (and
hence the multiplication node) is already scaled by a cer-
tain amount (2−1). We need to take this into account and
modify the scaling factors of its RHS matrix elements ap-
propriately. As a side note, the mapping can be varied by
taking advantage of the commutative property of addition
as explained in section 2.2.

The output produced by a PLSO differs from the actual
value by a factor of 2−j where j is the total number of chil-
dren of all the addition nodes minus the number of nodes
(both addition and multiplication)2. For the above mapping
the output produced differs from actual answer by a factor
of 2−3.

2.4 Implementing LSOs

We employ the same computational scheme used by the
E-method [5] to solve the (linear systems produced by)
LSOs in an online fashion [8]. The implementation con-
sists of as many modules as the number of unknowns, each

2This value is exact for all but one case; when the root of the string-of-
nodes is a multiplication node, j is one more than the above stated value.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

computing the value of an unknown yi given by:

yi = bi + ai · yi+1 (5)

such that one digit of yi is produced and one digit of yi+1

is consumed every cycle, the most significant digits first.
Consequently, all equations can be evaluated in parallel and
the latency is independent of the number of equations.

The algorithm executed by each of these modules con-
sists of an internal state (called the residual) and a recur-
rence equation to modify the same. For n unknowns form-
ing a linear system L : Ay = b, this recurrence is given
by (6).

wi[0]=bi[0]=

δ∑
k=0

bi,k2−k; ai[0]=

δ∑
k=0

ai,k2−k; di[0]=0

wi[j] = 2(wi[j − 1] + 2−δ−1 bi,δ+j − di,j−1 + (6)

ai[j − 1] di+1,j−1 + 2−δ−1 ai,δ+j Di+1[j − 1]),

for 0 ≤ i ≤ (n − 2), 1 ≤ j ≤ m

The equation for the nth module (i = n − 1) is same
as (6) except that the last two addition terms are absent.

The notation used is as follows: the number in square
brackets indicates the iteration, the first number in the dou-
ble subscript is the matrix row index and the second number
is the fractional digit position index. In the equation, m is
the operand precision and δ is the smallest number of digits
of ai and bi required to start the algorithm. The minimum
value of δ for our implementation is 2. The residual w

(j)
i is

represented in a redundant form consisting of a pseudo-sum
vector WS and a carry vector WC.

In the jth iteration, the ithth module, having calculated
the residual wi[j], selects the output digit di,j using the fol-
lowing selection function:

di,j = SEL(ŵi[j]) =

1 if ŵi[j] ≥ 0.5

0 if −0.5 < ŵi[j] < 0.5

−1 if ŵi[j] ≤ −0.5
(7)

where ŵi[j] is an estimate of wi[j] obtained by truncat-
ing it to one fractional digit.

The convergence requirement of the algorithm is satis-
fied if

|ai| ≤ 1/8, |yi| ≤ 1, |bi| ≤ 3/4, for all i (8)

For the proof of above equations, see [5] and [7, Chap
10].

Note that when bi is zero and ai is non-existent (for equa-
tions of the form yi = t), we either don’t need any hard-
ware implementation (because it is produced by some other

module at a lower level) or we can simply use a shift reg-
ister (this would be the case when t is a multinomial vari-
able/constant).

Each module requires a [5:2] adder, four registers,
two muxes with complementers and a digit selection unit.
See [7, page 575] for the implementation details for a sim-
ilar module. The cycle length for this implementation is
estimated to be:

tcycle = tREG + tMUX + t[5:2] + tsel (9)

indicating that the cycle time is independent of the pre-
cision of the operands.

2.5 PLSO vs (MLSO + ALSO)

Consider a string of alternating addition and multiplica-
tion nodes that can be mapped using a PLSO. In this sub-
section, we show why it is better to use a PLSO instead of
using a combination of ALSOs and MSLOs.

Let the string have q addition nodes and q multiplica-
tion nodes. Let the sum of all addition node children be c.
When we use a PLSO to map this string, the delay for the
first (correct) output digit to appear is, as described in sec-
tion 2.3, (c − 2q + 2). The two cycles in this expression is
the waiting time for the minimum number of digits (two) of
the inputs to arrive before the computation can start.

Now consider the case when we map each individual ad-
dition/multiplication node in the string using ALSO/MLSO.
For such a mapping, the overall delay (for the production of
the first output digit) would consist of the sums of the de-
lays of the individual LSOs. The sum of the delays of all
the ALSOs is equal to (c− q + 2q) = (c + q). The delay of
each MLSO is equal to two cycles. Thus, the sum of delays
of all the LSOs used in the mapping is (c + 3q) which is
clearly more than the delay of the PLSO mapping.

3 Applying LSOs to E-graphs

We now describe how to construct an arithmetic circuit
for the E-graph representing a multinomial. The approach
consists of the following steps. First, we “straighten” out
the E-graph into levels and apply the various LSOs to it with
an emphasis on PLSOs. Having done that, we determine the
start times for the levels.

We need to arrange the E-graph into levels so that we
can time the various levels appropriately. This is to make
sure that a node doesn’t start its computation before the re-
quired number of input digits from the lower level nodes
are available. We achieve this by arranging the nodes based
on their maximum distance from the root node. When we
arrange the graph in this way (with the root node at the
top), then all directed arcs between the different nodes flow

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

*

y

+

* +

+

*

+

*

x y
x

y

z

z z z

1

161

9

*

x
*

xx

1

8

Figure 5. The E-graph of Fig. 1 is arranged into
levels. The shaded path indicates the string-
of-nodes which are absorbed into a PLSO.

from bottom to top. We can find the maximum distance
from the root node to all other nodes using the Bellman-
Ford single-source longest path algorithm [3]. This algo-
rithm takes O(r2) time [3], where r is the total number of
nodes in the E-graph.

The diameter of a graph is defined as the largest path
between any two nodes. Since an E-graph is rooted, its
diameter path necessarily begins at the root. An E-graph
whose diameter is d has d levels when arranged according
to the above criteria. The levels increase as we go up, with
the root being at level d and the bottom-most level being at
level 1. The graph shown in Fig. 1 has a diameter of seven.
Fig. 5 shows the “levelled” version of the same graph.

Once we arrange the E-graph in levels, we apply the
various LSOs to the nodes or subgraphs making sure we
use PLSOs as much as possible. We describe the mapping
procedure using C-like pseudo code listed in appendix A.
ApplyLSOs is the top-level procedure in which we search
for occurrences of strings-of-nodes in the E-graph which
can be mapped using a PLSO; when we find one, we re-
place it with a PLSO positioned at the root of the string-
of-nodes while making sure all the connections to external
nodes are preserved. This mapping could potentially allow
us to pull the nodes connected to the string upwards, which
is what is done by the Pull procedure. Once we exhaust
all such strings, we map the rest of the nodes using MLSOs
and ALSOs. Fig. 6 shows the result of applying the LSOs
to the levelled graph shown in Fig. 5.

The mapping of the E-graph using the various LSOs pro-
duces a network of linear systems. Because of the depen-

x y

ALSO

signed-bit
buffer

x

x
y z

z
z z

x x

y

MLSO MLSO

MLSO

PLSO

1
9

1
8

1
16

t = 0

t = 3

t = 7

Figure 6. The result of applying LSOs to the
“levelled” E-graph of Fig. 5. The starting
times are indicated against each level.

dencies between the levels, level (n+1) can start executing
only after level n starts producing its output digits. If δmax

is the maximum online delay of any node in level n, then
level (n + 1) would have to start as many cycles after level
n, or later. Note that the online delay for a module includes
the two cycles it has to wait until it consumes the two boot-
strapping input digits. An optimization can be done if all the
LSOs in level (n + 1) are either ALSOs or PLSOs and they
were devised to take advantage of the commutative prop-
erty of addition operation (see section 2.2). In such a case,
a given level could be started earlier than the start time cal-
culated above although it is difficult to quantify the savings.

In addition to timing considerations above, we also need
to use buffers at the output ports of the LSOs. These are
needed to store (some or all) output digits of an LSO when
the upper level LSOs are not yet ready to consume them.
The size of the buffer required at the output of an LSO is
equal to the difference between the time the first (correct)
output digit is produced and the latest starting time of any
LSO which consumes it, up to a maximum size of m (the
working precision).

4 Input Scaling

The E-method works only when the elements of the lin-
ear system are bounded (see section 2.4). We discuss in this
section how to pre-scale the E-graph inputs so that this re-
quirement is satisfied. These calculations only give us loose
scaling factors and can almost certainly be improved for
specific E-graphs.

To determine the required scaling we first consider the
absolute value of each input at each node. Then, for each
level, we determine the largest value emitted by any of the

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

nodes in that level. In determining this value, we assume
that the inputs to this level are all equal to the maximum
value emitted by the lower levels. It is easy to see that, for a
given level, the maximum value is generated by the addition
node with the largest number of children or, in the absence
of any addition node, the multiplication node with the least
number of children. This is so because the multiplication
node’s output is less than any of its inputs when all the in-
puts are less than one (which they will be because of the
convergence requirements).

Let the maximum number of children of any addition
node in the whole E-graph be u. In the worst case, each
level will have one such addition node. Further, set all the
input values to the graph as x which will denote the largest
input. Using the approach described above, for an E-graph
of diameter d the maximum value produced by it (emitted
by the root node) is udx. If we ensure that this value is less
than 1/8 (the smallest of the upper bounds in (8)), then all
the elements of the linear systems generated by the E-graph
are necessarily less than 1/8. This is possible if and only if:

x <
1

8ud
(10)

Thus, we need to scale the multinomial so that each and
every variable/constant is less than the above number. De-
fine the degree of a term of a multinomial as the sum of
powers of each variable in the term, plus one if there is a
constant coefficient present. Let the maximum degree of
any term in the multinomial be k. Then the scaling factor of
the multinomial, denoted by sf , is given by:

sf = (8udx)k (11)

This is the value by which the given multinomial should
be (uniformly) divided before the MOLE method can be
applied. If the value of sf comes out less than one, then no
scaling is required.

Because of the scaling, the output generated by the arith-
metic circuit for an E-graph differs from the actual answer
by the same factor. So, we need to run the circuit for an
additional number of cycles, denoted by sc (scaling cycles),
given by:

sc = log2(sf) (12)

This is also the number of initial output digits we need
to ignore.

For the E-graph shown in Fig. 5 and for the value x =
1/512, the scaling factor and scaling cycles are 29 and 9
respectively. These are loose upper bounds and no scaling
is, in fact, necessary for this specific E-graph.

5 Area and Delay Complexities

In this section, we calculate the area and delay character-
istics of our scheme and compare it with a standard network

of conventional arithmetic modules (NCAM). A more de-
tailed comparison of delay/cost for a particular multinomial
is presented in [1].

An NCAM implementation consists of replacing each
multiplication and addition node in the E-graph with con-
ventional multi-operand multipliers and adders respectively.
The inputs/outputs of these conventional modules are digit-
parallel. The E-graph will again be arranged in levels based
on the maximum distance of each node from the root. Each
level will start its execution after its lower levels have fin-
ished execution. Since there is no digit-level pipelining in-
volved, the results of a particular node is stored in a buffer
whose size is exactly m digits. We might be able to op-
timize by reusing the adders/multipliers of lower levels,
but we will consider the worst case (e.g. there are only
one/two levels in the E-graph) and assign each node its own
adder/multiplier.

5.1 Area

The hardware for the MOLE method consists of the on-
line modules required for the implementation of the LSOs,
together with the buffers required at the outputs of the
LSOs.

Consider a multiplication node with v children. The lin-
ear system obtained by mapping an MLSO will have v un-
knowns in it. The implementation of this linear system will
require (v − 1) online modules since the unknown yv is ei-
ther emitted by some other module or can be implemented
using a shift register. Similarly, each addition node with v
nodes takes (v − 1) modules. The modules required for an
MLSO are simpler than those required for an ALSO since
the linear system for the former has zeroes for all its RHS
matrix elements. We will assume, for our analysis, that both
MLSO and ALSO use the same module and that this mod-
ule has a complexity that is the average of the two modules
actually required for these two distinct operators. Since a
node with v children requires (v − 1) modules, the whole
E-graph requires as many modules as its size (this assumes
the worst case scenario when no PLSOs are applicable). Fi-
nally, we need buffers at the output of each LSO. In the
worst case, each LSO will need a buffer of size m to store
its output.

Consider an E-graph which has r nodes and has a size
of size. As per the discussion above, the hardware require-
ments of the MOLE method are:

1. size online modules

2. r buffers of size m each.

We now calculate the hardware requirements of the
NCAM implementation. Each multi-operand multiplier
(adder) can be built using two-operand multipliers (adders)

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

composed in a tree-like structure. Clearly, an n operand
multiplier (adder) requires (n− 1) two-operand multipliers
(adders). Thus, for the same E-graph, an NCAM implemen-
tation requires:

1. size arithmetic units

2. r buffers of size m each.

Here too, we assume a common arithmetic unit for both
addition and multiplication whose complexity is the aver-
age of a two-operand adder and a two-operand multiplier.
We use a two-operand serial-parallel multiplier and a two-
operand carry ripple adder as the basic components for the
NCAM implementation.

Plugging in concrete values for the hardware costs for
each of the components, we estimate that the common on-
line module uses roughly two times more hardware than the
common arithmetic unit. So, in the worst case, the MOLE
method is twice as costly as the NCAM implementation.
Reference [1] provides a more detailed comparison study.

5.2 Delay

Consider an E-graph of d levels which, in the worst case,
has a u-children addition node at each level. Let us suppose
that, after the application of the LSOs, the resulting network
of linear systems has d′ levels with each level having at least
one ALSO containing u′ inputs. For our analysis, we will
assume ud = u′d′ and that d′ is small compared to d.

As per the earlier discussion on ALSO delay, we need

(u′ − 1 + 2)d′ = u′d′ + d′ = ud + d′ � ud (13)

cycles for the first output digit to be emitted by the root
node. In addition, we need to run the circuit for sc cycles ex-
tra to compensate for the scaling done to the inputs. Thus, in
the worst case, the total cycles required for MOLE method
to produce m digits of the output is:

T1 = (log2((8udx)k) + ud + m) · tcycle (14)

where tcycle is as defined by (9). As (14) shows, for the
same inputs, the initial delay is proportional to the diameter
of the E-graph and the maximum number of addition-node
children. The total delay is also affected by the input sizes.
For sufficiently small inputs the scaling cycles tend to be
zero.

The E-graph above is also the worst case graph for an
NCAM implementation if the u-children addition nodes are
replaced by u-children multiplication nodes (since a con-
ventional multiplier has a larger delay than a conventional
adder). For such an E-graph, the time taken by the NCAM
implementation is simply d (the number of levels) times the
delay of the u-operand conventional multiplier. Because of

the tree structure, a u-operand multiplier takes log2u (the
number of tree levels) times the delay of a two-operand mul-
tiplier. Let the delay of a two-operand multiplier of preci-
sion m be tm. Then, the total delay of the NCAM imple-
mentation is:

T2 = log2(u) · tm · d (15)

Note that tcycle is a constant whereas tm is proportional
to m. Plugging in typical component delay values, we esti-
mate that tcycle has a delay of roughly 5 units3 whereas tm
has a delay of 2.5m units. See [1] for the details.

Doing specific calculations for the multinomial (1), we
obtain that the first digit for the MOLE implementation is
emitted after 11 tcycle or 55 units. The NCAM implemen-
tation (which can be visualized by substituting each node in
Fig. 5 with the corresponding arithmetic unit), on the other
hand, would generate the first (and every other) output digit
after roughly 20.5m units which for m = 32 translates to
656 units. Note that the delay for the MOLE method has a
qualitative aspect to it in that it is “pay-per-digit” - we “pay”
for only as many digits as are needed.

6 Conclusion

In this paper, we have proposed a linear-system operator
based method for evaluating multinomials. It is very practi-
cal in nature because it can adapt to any E-graph represen-
tation of the multinomial. Although our scheme has greater
hardware cost than the conventional scheme, it compares fa-
vorably in delay when considering multinomials with small
inputs or applications which require only the first few dig-
its of the output. The scheme has the flexible property of
allowing as many digits of the output to be produced as
needed by the application. Finally the MOLE method, like
the E-method on which it is based, can be implemented us-
ing simple, problem-independent modules.

7 Future Work

Future work will focus on the following topics:

1. In the current design, all LSOs on a given level start at
the same time even if some of them could start earlier.
An intelligent global scheduling algorithm can be de-
signed for solving this problem. It would strive for the
lowest overall delay while also minimizing the buffers
between the various LSOs.

2. We need to see if the current design can be optimized
when the inputs are discrete (e.g. 0 or 1). Many
Bayesian Network E-graphs have discrete variables
called evidence parameters [4] for many of the inputs.

3We use FA delay per bit as the unit delay.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

3. We need to investigate if addition of more LSOs (or
a completely different set of LSOs) will help us solve
the original problem more efficiently.

A Appendix

This appendix lists the algorithms involved in applying
LSOs to an E-graph.

// Input: d-levelled E-graph
// Output: Network of LSOs
ApplyLSOs(egraph)
{
currentLevel = d // root
while(bottom-most level not reached)
{
for each node v in currentLevel
(from left to right)
{
nodeStr = GetMaxString(v)
if Length(nodeStr) > 1
{
apply PLSO to nodeStr
(replace nodeStr with a PLSO at v)
(preserve external connections)
Pull(DirectConnectedNodes(nodeStr))

}
else if v = Multiplication Node
apply MLSO
(replace v with MLSO)

else if v = Addition Node
apply ALSO
(replace v with ALSO)

}
currentLevel -= 1

}
}

// Returns max len string-of-nodes
// starting at v. Each node in the
// string has at most one parent
// Parallel arcs count as 2 parents
GetMaxString(node v)
{

nodeString = v

1ParentChilds = all children of v \
that have only one parent

if (1ParentChilds == empty)
return nodeString

foreach(node w in 1ParentChilds)
NS[i] = GetMaxString(w)

nsMax = Max length string in NS

nodeString += nsMax
return nodeString

}

// Pulls a set of nodes to higher
// levels when one of the nodes in the
// upper level got absorbed by a PLSO
// and has moved higher
Pull(QueueOfNodes Q)
{

Sort Q so that higher level \
nodes are in the front.

while(Q is not empty)
{

u = RemoveFront(Q)
maxPLevel = Max level of \
any parent of u

if(Level(u) < maxPLevel-1)
{

Level of u = maxPLevel-1
Add Children(u) to Q

}
}

}

References

[1] P. Adharapurapu and M. Ercegovac. A composite arithmetic
scheme for the evaluation of multinomials. In Proc. of the
38th Asilomar Conference on Signals, Systems and Comput-
ers, volume 2, pages 1889–1893, Nov. 2004.

[2] P. Burgisser, M. Clausen, and M. Shokrollahi. Algebraic
Complexity Theory. Springer-Verlag, January 1997.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. The MIT Press, Cambridge Mass., 1990.

[4] A. Darwiche. A differential approach to inference in
Bayesian networks. Jrnl. of the ACM, 50(3):280–305, 2003.

[5] M. Ercegovac. A general hardware-oriented method for
evaluation of functions and computations in a digital com-
puter. IEEE Transactions on Computers, C-26(7):667–680,
July 1977.

[6] M. Ercegovac. On-line arithmetic: An overview. In Real-
Time Signal Processing, Proc. SPIE VII, volume 495, pages
86–93. SPIE, 1984.

[7] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan
Kaufmann, May 2003.

[8] M. Ercegovac, M. Muller, and A. Tisserand. FPGA im-
plementation of polynomial evaluation algorithms. In Field
Programmable Gate Arrays (FPGAs) for Fast Board Devel-
opment and Reconfigurable Computing, Proc. SPIE 2607,
pages 177–188, 1995.

[9] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, Sep 1988.

[10] V. Strassen. Algebraic complexity theory. In Handbook of
Theoretical Computer Science, Volume A: Algorithms and
Complexity (A), pages 633–672. 1990.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

