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Abstract— In this paper, we present a novel implementation
for an N -tap complex finite impulse response (FIR) filter,
using complex number on-line arithmetic, based on adopting a
redundant complex number system (RCNS) to represent complex
operands as a single number. We present cost comparisons
with (i) a real number on-line arithmetic approach, and (ii)
a real number parallel arithmetic approach, to demonstrate a
significant improvement in cost.

I. INTRODUCTION

The N -tap finite impluse response (FIR) filter is defined as

an output sequence yn (n = 1, . . .) of an input sequence xn

(n = 1, . . .), in which

yn =
N−1∑
k=0

hkxn−k (1)

where hk(k = 0, 1, . . . , N − 1) are the filter coefficients.

The standard implementation is shown in Figure 1. Assuming

m-bit precision, it requires N m-bit multipliers and an N -

operand m-bit adder. For a complex FIR filter, the filter

coefficients as well the the input and output sequences are

complex numbers. This significantly increases the size of the

design, since an m-bit complex number multiplier is equivalent

to 4 m-bit real number multipliers and 2 m-bit real number

adders. Since area is a critical factor in FPGA design, we

propose an approach that utilizes a radix 2j number system,

and that yields a significant lower cost than an alternative

radix 2 on-line implementation and a real number bit-parallel

implementation.

x(n)

h(0) h(1) h(N-1)...

...Reg Reg Reg

Adder

y(n)

Fig. 1. FIR filter implementation

II. COMPLEX NUMBER ON-LINE FLOATING-POINT

ARITHMETIC

On-line arithmetic [3] is a class of arithmetic operations

in which all operations are performed digit serially, in a

most significant digit first (MSDF) manner. Several advan-

tages, compared to conventional parallel arithmetic include:

(i) ability to overlap dependent operations, since on-line algo-

rithms produce the output serially, most-significant digit first,

enabling successive operations to begin before previous op-

erations have completed; (ii) low-bandwidth communication,

since intermediate results pass to and from modules digit-

serially, so connections need only be one digit wide; and (iii)

support for variable precision, since once a desired precision

is obtained, successive outputs can be ignored. One of the key

parameters of on-line arithmetic is the on-line delay, defined

as the number of digits of the operand(s) necessary in order

to generate the first digit of the result. Each successive digit

of the result is generated one per cycle. This is illustrated in

Figure 2, with on-line delay δ = 4. The latency of an on-

line arithmetic operator, assuming m-digit precision is then

δ + m − 1.

δ=4

input

compute

output

Fig. 2. On-line delay of a function

Complex number on-line arithmetic [5] uses a class of

on-line arithmetic operators on complex number operands.

For efficient representation, a Redundant Complex Number
System (RCNS) [1] is adopted. A RCNS a radix rj system, in

which digits are in the set {−a, . . . , 0, . . . , a}, where r ≥ 2
and �r2/2� ≤ a ≤ r2 − 1. Such a number system can be

denoted RCNSrj,a. A Redundant Complex Number System

with r = 2, a = 3 denoted RCNS2j,3, allows ease of the

definition of primitive on-line arithmetic modules, as well as

ease of conversion to and from other representations. This

number system was introduced as Quarter-imaginary Number

System in [4]. For implementation of the complex FIR filter,
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in order to permit a relatively wide range of input values, we

assume floating-point arithmetic. Two on-line floating-point

arithmetic operations are used: (i) RCNS2j,3 on-line floating-

point addition; and (ii) RCNS2j,3 on-line floating-point con-

stant coefficient multiplication. The recurrence algorithms and

implementation parameters when mapped to a Xilinx Virtex

FPGA are discussed in detail.

Using RCNS2j,3, a floating-point complex number x =
(XR + jXI) · (2j)ex can be normalized with regard either

to the real component XR or the imaginary component XI ,

depending on which has larger absolute value. The exponent

ex is shared between the real and imaginary component.

Exponent overflow/underflow can be handled by setting an

exception flag, and allowing processing of results (although

erroneous) to continue.

A RCNS2j,3 fraction x is considered normalized if 2−1 ≤
max(|XR|, |XI |) < 1. The output of a complex number

operation can be undernormalized for several reasons:

1. The range of an output determined by the on-line algo-

rithm allows it to be undernormalized.

2. Digit cancellation resulting from the addition/subtraction

of numbers with the same exponent value.

In this paper, we assume operands of an RCNS2j,3 on-

line algorithm have non-zero most significant digits and

are normalized. When the result Z exceeds the range of

a normalized fraction (i.e. max(|ZR, ZI |) ≥ 1) then the

exponent is incremented. When the result is below the range

of a normalized fraction (i.e. max(|ZR, ZI | < 1
2 ), then the

exponent is decremented and leading zeros are discarded. The

normalization algorithm which takes as input the generated

output digit zk, the output exponent ez and the on-line delay

for the arithmetic operation δ is shown below. This is similar

to the normalization algorithm presented in [2] for radix-2

on-line rotation.

NORM(zk, ez, δ)

/* Initialization */
done = 0

/* Computation */

if k = (δ − 2) and zk �= 0 then

ez = ez + 2
done = 1

if k = (δ − 1) and zk �= 0 and not(done) then

ez = ez + 1
done = 1

else if k ≥ δ and zk = 0 and not(done) then
ez = ez − 1

else if (k ≥ δ and zk �= 0) then

done = 1
end if

III. RECODING ALGORITHMS

Although RCNS2j,3 allows flexibility in representation,

there are also several drawbacks:

• Handling digits 3 and −3 requires producing significand

multiples 3X and −3X , requiring an extra addition step.

• A significand X with fractional real and imaginary

components XR and XI can have integer digits,

such as (11.3212)2j = 3
8 + 3

8j, which can compli-

cate ensuring complex significands within the range

max(|XR|, |XI |) < 1.

To handle these cases, several recoding modules are pre-

sented: (i) digit-set recoding; and (ii) most-significant-digit

recoding.

A. Digit-set recoding

In order to reduce the complexity introduced by han-

dling digits −3 and 3, digit-set recoding initially recodes

a RCNS2j,3 digit xk ∈ {−3, . . . , 3} into a pair of digits

(tk−2, wk), in which tk−2 ∈ {−1, 0, 1} and wk ∈ {−2, . . . , 2}
such that xk = −4tk−2 + wk. Then a RCNS2j,2 digit χk

is computed as χk = tk + wk. In order to restrict χk ∈
{−2, . . . , 2}, two cases of pairs of values must be prevented:

(i) tk = 1, wk = 2, (ii) tk = −1, wk = −2. To do so, xk+2 is

examined. If xk+2 ≤ −2 and xk = 2, which could allow the

first case, xk is recoded as (1, 2), otherwise as (0, 2). In the

same way, if xk+2 ≥ 2 and xk = −2, which could allow the

second case, xk is recoded as (1, 2), otherwise as (0, 2) Then

it is assured that χk ∈ {−2, . . . , 2}. The digit-set recoding

algorithm DSREC is shown below.

DSREC(xk, xk+2)

(tk−2, wk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if xk = 3
(1, 2) if xk = 2 and xk+2 ≥ 2
(0, 2) if xk = 2 and xk+2 < 2
(0, 1) if xk = 1
(0, 0) if xk = 0
(0, 1) if xk = 1
(0, 2) if xk = 2 and xk+2 > −2
(1, 2) if xk = 2 and xk+2 ≤ −2
(1, 1) if xk = 3

χk = tk + wk

B. Most-significant-digit recoding

In order to handle carries produced when performing oper-

ations on significands consisting of RCNS2j,3 digits, most-

significant-digit recoding recodes most-significant residual

digits w−1, w0 ∈ {−1, 0, 1} of respective weights (2j)1 = 2j
and (2j)0 = 1, and digits w1, w2 ∈ {−3, . . . , 3}, of respective

weights (2j)−1 and (2j)−2, into digits ω1, ω2 ∈ {−3, . . . , 3}
of respective weights (2j)−1 and (2j)−2. The algorithm

MSREC for recoding general digits wk−2 and wk into digit

ωk is shown below.
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MSREC(wk−2, wk)

ωk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if (wk−2 = 0 and wk = 3) or

(wk−2 = 1 and wk = 1)
2 if (wk−2 = 0 and wk = 2) or

(wk−2 = 1 and wk = 2)
1 if (wk−2 = 0 and wk = 1) or

(wk−2 = 1 and wk = 3)
0 if wk−2 = 0 and wk = 0
1 if (wk−2 = 0 and wk = 1) or

(wk−2 = 1 and wk = 3)
2 if (wk−2 = 0 and wk = 2) or

(wk−2 = 1 and wk = 2)
3 if (wk−2 = 0 and wk = 3) or

(wk−2 = 1 and wk = 1)

IV. RCNS2j,3 ON-LINE FLOATING-POINT ADDITION

RCNS2j,3 floating-point addition (z = x + y) is defined

such that given inputs x = (XR + jXI) · (2j)ex and y =
(YR + jYI) · (2j)ey , the output z = (ZR + jZI) · (2j)ez is

produced such that

ZR = XR + YR

ZI = XI + YI

ez = max(ex, ey)
(2)

Each output digit at step k, namely zk is generated based

on input digits xk+δ−1 and yk+δ−1. The algorithm is shown

below, where WE [k] is the low-precision estimate of the even-

indexed (real) component of the recurrence W [k]. The design

of a m-digit significand and e-bit exponent RCNS2j,3 on-

line floating point adder is shown in Figure 3. The SUBE unit

computes the difference of the exponents. The ALIGN unit

performs alignment of operand y′ to synchronize the arrival

of the input digits. The SWAP unit exchanges the operands if

necessary. The PPM and MMP modules are simple full-adders

that appropriately negate (indicated by ”-” on the port) inputs

and outputs to perform borrow-save addition. The NORM unit

normalizes the result by updating the output exponent zk. A

summary of cost of individual modules is shown in Table I.

The design requires 3m+4e+4 CLB slices. Assuming m = 24
and e = 8, the cost is 108 CLB slices.

TABLE I

COST OF RCNS2j,3 ON-LINE FLOATING-POINT ADDER

Module CLB slices

SUBE e

ALIGN 3m

SWAP e

PPM/MMP 4

NORM 2e

Total cost 3m + 4e + 4
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k,1
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-+
PPM
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k,0
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k,0
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+ + -
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- +
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k,1
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Fig. 3. RCNS2j,3 on-line floating-point adder

RCNS2j,3 On-line Floating-Point Addition

/* Initialization */
ed = ex − ey

ez=max(ex, ey)

W [−δ + 1] = 0
z0 = 0
for k = −δ + 2 to 0 do

(x′
k+δ−1, y

′
k+δ−1) =

⎧⎨
⎩

(0, yk+δ−1) if ed < 0
(xk+δ−1, 0) if ed > 0
(xk+δ−1, yk+δ−1) if ed = 0

W [k] = 2j(W [k − 1]) + (2j)−δ+1(x′
k+δ−1 + y′

k+δ−1)
end for

/* Recurrence */
for k = 1 to m do

(x′
k+δ−1, y

′
k+δ−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, yk+δ−1)
if k ≤ |ed| and ed < 0

(xk+δ−1, 0)
if k ≤ |ed| and ed ≥ 0

(xk+δ−1−|ed|, yk+δ−1)
if k > |ed| and ed < 0

(xk+δ−1, yk+δ−1−|ed|)
if k > |ed| and ed ≥ 0

W [k] = 2j(W [k − 1] − zk−1)
+(2j)−δ+1(x′

k+δ−1 + y′
k+δ−1)

zk = �WE [k] + 1
2�)

ez = NORM(zk, ez, δ)
end for
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V. RCNS2j,3 ON-LINE FLOATING-POINT CONSTANT

COEFFICIENT MULTIPLICATION

RCNS2j,3 floating-point coefficient multiplication (z =
xy) is defined such that given constant coefficient parallel

input x = (XR + jXI) · (2j)ex and variable input y =
(YR + jYI) · (2j)ey , the output z = (ZR + jZI) · (2j)ez is

produced such that

ZR = XRYR − XIYI

ZI = XRYI + XIYR

ez = ex + ey

(3)

Each output digit at step k, namely zk is generated based

on parallel input vector X and input digit yk+δ−1. The

algorithm is shown below, where WE [k] is the low-precision

estimate of the even-indexed (real) component of the recur-

rence W [k]. The design of a m-digit significand and e-bit

exponent RCNS2j,3 on-line floating point constant coefficient

multiplier is shown in Figure 4. The ADDER unit computes

the sum of the exponents. The digit-vector multiplier computes

the product Xyk at each iteration. The borrow-save adder

computes the sum Wk of the previous residual Wk−1 and the

intermediate product Xyk, and stores the result in the register

REG W. The NORM unit normalizes the result based on the

current output exponent ez , the on-line delay δ, and the output

digit zk. A summary of cost of individual modules is shown

in Table II. The design requires 8m + 3e + 32 CLB slices.

Assuming m = 24 and e = 8, the cost is 248 CLB slices.

TABLE II

COST OF RCNS2j,3 ON-LINE FLOATING-POINT CONSTANT COEFFICIENT

MULTIPLIER

Module CLB slices

Adder e

DSREC 12

Digit-vector multiplier 4m

Borrow-save adder 4m

NORM 2e

MSREC 20

Total cost 8m + 3e + 32

yk

DSREC

Digit-vector Multiplier

X

Borrow-save Adder

 Reg  W

zk-δ

Adder

ex
ey

 NORM

ez

δ

 MSREC

Fig. 4. RCNS2j,3 on-line floating-point constant coefficient multiplier

RCNS2j,3 On-line Floating-Point
Constant Coefficient Multiplication

/* Initialization */
ez = ex + ey

W [−δ + 1] = 0
Y [−δ + 1] = 0
z0 = 0

for k = −δ + 2 to 0 do
W [k] = (2j)(W [k − 1])

+(2j)−δ+1(Xyk+δ−1)
Y [k] = Y [k − 1] + yk+δ−1(2j)−k−δ+1

end for

/* Recurrence */
for k = 1 to m do

W [k] = (2j)(W [k − 1] − zk−1)
+(2j)−δ+1(Xyk+δ−1)

zk = �WE [k] + 1
2�)

Y [k] = Y [k − 1] + yk+δ−1(2j)−k−δ+1

ez = NORM(zk, ez, δ)
end for

VI. IMPLEMENTATION

Each tap (slice) of the FIR filter, assuming 24-digit sig-

nificand and 8-bit exponent floating-point operands, consists

of 24 digit-wide registers to store individual digits of inputs

x(n), x(n−1), . . . , x(n−N−1) and a complex number on-line

floating point constant coefficient multiplier. Each multiplier

product is fed to one of the operands of a complex number

on-line floating point adder. The parallel adder in Figure 1

can be implemented as a binary tree of complex number

on-line floating point adders, each one initially adding two

intermediate multiplier outputs and producing an intermediate

sum output, until the final output y(n) is computed.

A. Radix 2j on-line network

An N -tap complex FIR filter can be designed as a network

of radix-2j on-line floating-point arithmetic operators, where,

assuming m-digit significands and e-bit exponents, a radix 2j

on-line floating-point adder has a cost of 3m + 4e + 4 CLB

slices, and a radix 2 on-line floating-point multiplier has a cost

of 8m + 8e + 32 CLB slices. For m = 24 and e = 8, the cost

of a radix 2j on-line floating-point adder is 108 CLB slices

and the cost of a radix 2j on-line floating-point multiplier is

248 CLB slices. Since for an N -tap complex FIR filter, N −1
radix 2j floating-point adders and N radix 2j floating-point

multipliers are used, then the cost is 356N − 108 CLB slices.

B. Radix 2 on-line network

An N -tap complex FIR filter can be alternatively designed

as a network of radix-2 on-line floating-point arithmetic

operators, where, assuming m-digit significands and e-bit
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exponents, a radix 2 on-line floating-point adder has a cost

of 1.5m + 3e + 2 CLB slices, and a radix 2 on-line floating-

point multiplier has a cost of 3m + 3e + 2 CLB slices. For

m = 24 and e = 8, the cost of a radix 2 on-line floating-

point adder is 70 CLB slices and the cost of a radix 2 on-line

floating-point multiplier is 98 CLB slices. Since for an N -tap

complex FIR filter, 3N − 1 radix 2 floating-point adders and

4N radix 2 floating-point multipliers are used, then the cost

is 602N − 70 CLB slices.

C. Radix 2 parallel network

An N -tap complex FIR filter can be alternatively design

as a network of radix-2 parallel arithmetic operators. The

library of Xilinx CORE arithmetic modules [6], which can

be scaled in terms of precision is used. Since the modules

are defined for fixed-point arithmetic, appropriate exponent

handling units are used to support floating-point arithmetic.

For 24-bit significands and 8-bit exponents, the cost of a radix

2 parallel floating-point adder is 30 CLB slices and the cost of

a radix 2 parallel floating-point multiplier is 320 CLB slices.

Since for an N -tap complex FIR filter, 3N−1 radix 2 floating-

point adders and 4N radix 2 floating-point multipliers are

used, then the cost is 1370N − 30 CLB slices.

D. Cost comparison

The cost of the proposed radix 2j on-line network, and the

alternative radix 2 on-line network and the radix 2 parallel

network are compared for the implementation of an N -

tap complex FIR filter for common values of N, including

N=8,16,64, and 256. In each case, we assume floating-point

operands consisting of 24-digit (or bit) significands and 8-bit

exponents, as shown in Table III.

TABLE III

COMPARISON OF COSTS FOR FLOATING-POINT N -TAP COMPLEX FIR

FILTER (m = 24, e = 8)

N RCNS2j,3 Radix-2 Radix-2

on-line on-line parallel

8 2740 4746 10930

16 5588 9562 21890

64 22676 38458 87650

256 91028 154042 350690

VII. CONCLUSION

We have demonstrated a new approach for implementating

an N -tap complex FIR filter, based on using complex number

on-line arithmetic modules which adopt a redundant complex

number system (RCNS) for efficient representation. Significant

improvement in cost in comparison to a radix-2 on-line ap-

proach and a radix-2 parallel approach have been shown. This

offers motivation for further research into other applications

utilizing complex number operations.
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