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The transfer function of Fig. 8 can be shown to be A Method of Eliminating Oscillations in
E, R A, High-Speed Recursive Digital Filters
B I <1 + % + L) John S. Fernando and M#aD. Ercegovac
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R- Abstract—A dynamic scaling (DS) method is proposed as a cost-effective
<1 + T L) means of eliminating overflow and limit cycle oscillations in fixed-point
$2 + L 2wes + w2 direct-form recursive filters. It is implemented by adding a DS unit to
<1 + & + L) a fixed-point on-line module without modifying latter. On-line modules
R consume inputs and produce outputs digit serially, most significant digit

first. The DS method introduces a shared exponent into the fixed-point
with the gains of the individual fixed gain amplifiers combined focomputation at reasonable cost. Implementation in a 1.5: gate array
simplicity as shows that the DS method is twice as cost effective as the previously

known precision extension method. The need for scaling between filter

2 Ao sections is also eliminated.

L=A7—"

T4 Index Terms—On-line arithmetic, oscillations, recursive digital filters.
The overall loop gains remain closer to unity over a broader range of
gain error and, hence, the circuit quality factor remains closer to the
desired value. Positive one and two percent change in amplifier gains
result in a 6.2 and 21.4% reduction &f, respectively. Similarly, ~ Recursive digital filters are usually implemented as a cascade
negative one and two percent changes in amplifier gains cause a®.&econd-order sections to minimize finite-precision effects. Nev-
and 19.5% reduction of). Thus, application of this filter approachertheless, due to the inherent feedback loop of the recurrence,
to fixed gain amplifier integration requires gain tracking of arounsuch finite-precision effects can induce overflow and limit cycle
1% for the various amplifiers. This appears reasonable for amplifi@gcillations even in stable filters. Overflow oscillations are of large
fabricated on a common substrate. amplitude, caused by arithmetic overflow due to fixed precision, and
limit cycles are small amplitude oscillations caused by round-off error
in multiplication. Both types of oscillations can be induced with zero
) ~_or nonzero inputs. The direct-form filter is faster and cheaper than

Several improvements have been made to a known active filteriggher structures but more susceptible to oscillation. Eliminating or
method using all-pass networks. A new all-pass circuit, based ofyucing oscillations without compromising speed is desirable.
fixed gain integrable amplifier exter_1c_is the fllt_er’s resonant frequencyriter rate is also affected by the arithmetic used for compu-
to the 40-50 MHz range. A modified configuration improves thgytion, Particularly with conventional arithmetic (bit-parallel, least-
off-rc_esona_nt p_erformance of the _f!lter. A secqnd _modlflcatlon of thﬁgnificant-bit-first computation), the dependence of the ougpub
configuration improves the stability of the circuit and reduces thg, y(n — 1) limits operating speed. Recent papers have shown

(A4 — ATAY). (21)

I. INTRODUCTION

VII. CONCLUSIONS

sensitivity of theQ with respect to amplifier gain. that most-significant-digit-first (MSDF) or on-line arithmetic can
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algorithm. An on-line radix- operand;z, assumed to be a fraction, is TABLE |

expressed in terms of its digif§; asz = S9Z) X;r 7, whereX is PRECISION (BITS) REQUIRED FORDS AND PE SHEMES
in the redundant digit s¢t—p, - - -, p} such that > p > »/2. Having
input and output digits in the same digit set allows cascading of
on-line modules and facilitates recursive computation. An important  Bits for DS (bs) | 16 | 19| 22 | 25 | 28 | 31 | 34 | 37 | 40 | 43
characteristic of on-line computation is the on-line deléyy;, Bits for PE (byy) | 36 | 44 | 52 | 60 | 68 | 76 | 84 | 92 | 100 | 108
which is the number of clocks between input and output digits of
identical weight. The on-line delay is typically two to five clocks. On-

Coeff. frac. bits (m) | 8 | 10|12 |14 | 16| 18 (20 |22 | 24 | 26

line arithmetic offers a systematic approach to deriving digit-serial TABLE 11
algorithms. Well established on-line algorithms exist for common SCALING OPERATIONS ADVANCE AND RETARD (FOR 1 = 2)
operations. On-line and MSDF algorithms are particularly well suited :
. . . . X Operation Input Output
for VLSI implementations of high-speed recursive filters [1], [3], [4].
mantissa exponent mantissa exponernt
Precision Extension (PE) Method Advance | 0YY --- VY foy YY ---YYO0 | k-1
The PE method of eliminating all self-sustained oscillations in aetard (n=2) | Y Y ... ¥ By ooy ...y Ey+2

stable fixed-point second-order filtéy(n) = u(n) + ay(n — 1) +
by(n — 2), where coefficients andb are real-valued) using on-line . o . .
arithmetic is described in [1]. The relevant results described in [1] a? eC|S|hon (?L——BZS ?ns. leglnm,% +2 ca;)n bef ct?lculateq f:jorfn
summarized below. The symbols used are as follewss the number th)’ I;VSeretH H .d t(;r roun Im%E etzu?f er of bits recnuwe_mt or
of fraction bits representing coefficient$,> the number ofdesired € rr(lje_ c')l' SIn | Teh5|mp eb Tg't od for vzzln]?usﬂ\]/a;e; thod
output bits,b,, the number ofdditionalleast significant bits required comparedn fable 1. 1he number of bils required for the metho

to, eliminatelimit cycles from the desired output)o the number is calculated as_s“’_“'”@” =m. . .
of additional most significant bits required to eliminaverflow Overflow oscillations are eliminated by incrementing the exponent

oscillations from the desired outpui,y the working precision in (E,) and right-shifting the output wheg(n) overflows. For radix-4

bits, and £ the maximum normalized quantizaticerror due to c_i|g.|ts, the maximum value_ OF, IS Erax = .[bo/ﬂ' To thmate
multiplication, limit cycles from the desired output requirés zero bits to be

The limit cycle magnitude is less thasz(4/7r)21~5’"' for pole absorbed into the exponent. For radix-4 digits, minimum value of

magnitudes>0.9. Since the limit cycle corrupts the least significan{;-” iS Emin = —[bp/2].

part of the fixed-point result, extending working precision sufficientl Th_e \évc;rkmt?] prgglsmnﬂ:o:jthe I_DrEanelthcr)]d IS aléOUttz'S t'lmes thatlt
at the least significant bit (LSB) end eliminates the limit cycl equired for the method as fable | Snows. Lost savings resu

from the actual output. The required extension is given by (L ecause, as shown later, the cost of introducing an exponent into the

Overflow oscillations are caused by internal overflows. Assuming t gmputation is less than that for precision extension according 1o (3).

quantization error is negligible, and thatrn) < 1, the number of bits )

required at the most significant bit (MSB) end to prevent overflow i5"€ DS Algorithm

given by (2). Thus, the working precision required to eliminate both The DS algorithm is based on two scaling operaticevance

overflow and limit cycles from the actual output is given by (3). and retard, performed on on-line operands. The advance operation
performs a 1-digit left shift of the mantissa and also decrements the

by =14 |1.5m +1 8E ) exponent. The retard operation performs raidligit right shift and
b= 2 T 108, increments the exponent by Table Il illustrates advance and retard
bo =1+ [1.5m 4+ .5] (2) (for n = 2) operations performed on operapdvith digits Y.

Normalizedu(n) is denoted byu, andy(n),y(n — 1),y(n — 2)
are denoted bw, y1,y2. E, is the exponent ox and E, is the

In imol tati . i | arithmeti h ‘ exponent for bothy; andy». E,, is the exponent of and is also the
n implementations using conventional arithmetic, such an extens, exponent ofy,. Advance operation is indicated byDV" = 1.

sion of precision reduces the sampling rate. In contrast, if on-line / is the magnitude of shift, in digits, for retard anand R, the

MSDF arithmetic IS u;eq §ampllng rate Is unaﬁectgd. Thg Increaseline for retard o andy2. R, is the magnitude of shift, in digits,
hardware for PE is significant regardless of the arithmetic used. Fcoa{

. . . . . ; _caused by overflow iry; from previous computatioiR.e{0,2}).
exam‘?'e' havmg_ coefficients W'.th 10 f_ract|on bits requires a WOTKINGihaisy 1= = 1 andY2: = 1 indicate if leading fraction digit of
precision of 44 bits. The dynamic scaling (DS) method is a less cosyt}ﬁl

L S : ) i or is zero.
method of eliminating oscillations in on-line filters. Y b2
DS Algorithm

bw =bo +bp + br. 3

lll. THE DS METHOD Begin
With a moderate extension of working precision, the MSD of the Step 0: Initially £, = 0,41 =0,y =0
outputy(n) can be guaranteed to be zero during zero-inptf = Step 1: Computd?, = max(E, — E,, Ry); R, > 0

0) Iimit f:ycle oscillations. This allows the output to be Ieft—_shifted by Step 2:  Find (Boolean)
one digit for the computation of the next outpyt.+1), provided an . a ;

exponent is introduced to keep track of the shifts. Shifting can be done ADV =(Ro=0)(Y12)(Y22)(Eu < Ey)(Ey > Emin)
again when the MSD becomes zero sometime later. By induction, theStep 3: Compute

shifting can be done until the exponent is decremented to the point E,-F,—-1 if ADV =1

at which the desired output is zero for a given precision. Thus, limit R, — E,—-F,+ R, if ADV =0
cycles are eliminated from the desired output by increasing working v andR, > E, — E,
precision just sufficient to guarantee a zero MSD whén) = 0. 0 otherwise

Thus, for radix-4 digits, the DS method requires a minimum working Step 4: E, = E, + R, — ADV
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Fig. 2. Exponent computations.

Step 5: Retard/Advance, i, v line fixed point recurrencg = u + ay: + by2. The exponent unit
Step 6: Execute on-line fixed point computation computgs the retard values and advance signal as shown in the graph
in Fig. 2.
= —j' a1 +bys In general, ford-digit working precision,d + &, clocks are
Step7: Ey — E, required. For 8-digit working precision, the computation df)
Step 8: Goto Step 1 takes 12 clocks(C'0,C1,---,C'11. Synchronization of the digits is
End done by introducing appropriate delays (1D, 4D, and 6D in Fig. 1)

based on the known latencies of the fixed-point computation and the
scalers. The latency of the fixed-point computation is nine clocks
PNO cascaded MA modules, each with a four-clock latency, plus a
atch) and that of each scaler is two. Since the delay foryithop

must be 12 (same as the computation cycle) a delay of 1 is inserted

gghown as 1D in Fig. 1). To synchronize inputs for the fixed-point

ymputation,y; is delayed another 12 clocks to produge Since

Step 1 of the DS algorithm indicates the two conditions th
require y; and y» to be retarded: wherE, > E,, or when y;
overflows from the previous computation. Since both conditio
may occur simultaneously, the maximum retard value is chos

Step 2 specifies the conditions for advance: no overflow, leadi .
P P e scaler takes two clocks, a delay of 10 clocks must be inserted

fraction digits of ,y;, and y» must be zero, and the exponenlI . o
must be greater than the minimum value. As Step 3 indicates, fﬁ‘ethe y> path. The 10-clock delay is split into delays 6D and 4D,

retard value ofu is different because is normalized (i.e., MSD is to achiev_e sy_nchronization atthe scaler input and at the fixed-point
nonzero). Normalization is convenient becausaeeds no advance computation |_nput. .
subsequently. Also, advance by more than 1 increases complexity anzi_he DS unit op§rates as follows. In clogk CO the scalers reccyewe
delay of the DS unit. Step 4 calculates the new exponent basedIZ))h’ Ry, and ADV from the exponent unit and also the MSD's

the scaling operations performed. Step 5 scales the on-line operaﬂ{jg’yl’ andy.. The on-line inputs are scaled and the fixed-point

that are input to the on-line fixed point computation in Step bcpmputation_ begins in C2. Th(? exponen} unit begins computation in
To reduce complexityy; andy: share the same exponent and arglo”,When inputsEly, Eu, By, Y1z, an_dYQ: are gated_by GATE'
retarded or advanced identically. The radix and digit set chosen for tﬁéﬂBy and R, have to be s_table in C1. Computatlor_l E\t IS

DS algorithm are the same as that for the fixed-point computatid?lot critical because the value is not needed at the beginning of the

Besides extending precision, no other changes are required in lltﬁ'éation. In CO, the most significant fraction digits are available at
fixed-point computation the inputs of the scalers shown in Fig. 1. Since the scalers have

a delay of two clocks, the scaled outputs are available in C2. The
signal CLD clears the digit registers of the scalers before each
IV. IMPLEMENTATION computation cycle begins. CLZ clears the flip-flop that outputs Z
This section describes gate array (LCA10K) implementations td the scalers.
the DS scheme and the PE method and compares performance arebr a working precision of 8 radix-4 digits (16-bits) wiffi,in =
cost. Both implementations are fen = 8 andb, = 8. Fig. 1 —15 andE...x = 15 the entire circuit takes 4437 gates (includes
shows the block diagram of the DS scheme. Three scalers andigit delays) and runs at a minimum clock period of 11.2 ns. The
single exponent unit are connected to a word module (two cascademnponent sizes and minimum clock periods are: DS Unit—1179
radix-4 on-line MA modules described in [3]) that computes the omates and 9.4 ns, Normalizer—426 gates at@l4 ns, Cascaded
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TABLE 11l
CoMPARISON OFDS SHEME AND PE SHEME FOR WORD MODULES
Scheme | Gates Rate telk Rate/Gate
(Msamples/s) | (ns) | (Msamples/s/gate)
DS 4437 7.44 11.2ns 0.00167
PE 5130 41.13 11.0ns 0.00081
S = T e
Ujn) Y, (n)
- b 0—-|
™ MA ™ ma >
Uj(n+1) Xg(n+l)
> b alem
MA MA
Uj(n+2) Y, (n+2)

Fig. 3. Maximum-rate array for 16-bit I/O.
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With one DS unit for the array, the normalizer feeding the
independent inputs:(n) through u(n + 3) to the word modules
must perform block normalization, producing four on-line inputs with
a single exponenf,,. The cost of a maximum rate word module
array with DS is estimated at 14 000 gates (Block Normaliz&600
gates, eight MA modules with 22-bit /0 11 856 gates, DS Unit 1179
gates). In contrast using PE in the array takes 28 260 gates (six word
modules, with 36-bit precision). Thus, the cost of a PE scheme is
twice the cost of a DS scheme for maximum rate arrays. With DS,
the maximum rate is given b¥laxRateps = 1000/tcx(imp +
(2/Nps). For the example considered= 8, §imp = 4 and Nps =
4, MaxRateps = 24.4 MSamples/s, which is 88% of the maximum
rate without DS (27.8 MSamples/s). Although the array using PE is
more regular and 12% faster, the maximum-rate array with DS is
more cost-effective with a rate/cost ratio of 1.8 times that of an array
with PE.

V. CONCLUSION

We have proposed the DS scheme and shown that it is more cost-
effective than the PE method in eliminating limit cycles oscillations
and overflow oscillations in on-line implementations of direct form
recursive filters. The scheme is implemented by adding a DS unit to
a fixed-point on-line word module. Except for precision adjustment,
easily achieved by adding bit-slices, no changes to the word module
are required. Implementation in a 1A gate array technology

MAs—2424 gates and 10 ns. A large range for the exponent Wasows that, for word modules with an output precision of 8 bits,
chosen to show that the clock rate of the DS Unit is not critical ev@Ae DS scheme is 13% smaller than the PE scheme and has a

for large values ofm andbp.

sampling rate 80% higher. Maximum-rate arrays using the DS scheme

Rate/Cost Comparison of Schemeko compare the DS schemerequire only half as many gates as an array using PE and operate
requires implementing thequivalent PE scheme, with identical at 88% of the maximum rate. For higher output precision the

values ofrn andb,, and different working precisions. Fot = b, =

DS scheme is even more cost effective. Having automatic scaling,

8, the PE method requirésy = 14 +8+ 14 = 36 [(1)—(3)] and the the DS scheme eliminates the need for scaling between cascaded

DS scheme requirdsy = 16 (Table I). The exponent range requiretections.

for the DS scheme is-4 < E, < 7. The two implementations are
compared in Table Ill. The sampling rate of the DS implementation
is 80% higher than that of the equivalent PE implementation and
is 13% smaller. Thus the rate/gate ratio for the DS scheme is morﬁ]
than twice that for the PE implementation. Asor by is increased,

the required working precision for the PE scheme increases relative
to that of the DS scheme (Table I) and the increase in cost of thi]
scalers and the exponent unit of the DS scheme is relatively small.
Thus for higher working precision the DS scheme is even more co%]
effective.

Applying DS to Arrays:The DS method may be applied to
maximume-rate arrays such as that shown in Fig. 3 for 16-bit I/O.
Since the output of a word module is input to the next word modulé‘”
without delay, the array delivers the maximum rate achievable with
the given MA modules (MaxRate: 1000tk Simp )-

Rather than advancing on-line inputs before each computation, the
advancing can be done once for several computations. Thus leading
zeros are allowed to accumulate and are removed simultaneously.
Limit cycles would still be effectively eliminated since leading zeros
in the I/O would be gradually removed. Consider an array similar
to Fig. 3 with one DS unit placed before the first word module
(top left in array). To allow word modules without a DS unit to
handle overflow in the output of the preceeding module, the working
precision of each word module is extended &y = Nps — 1
digits. Nps, the number of word modules in the maximum-rate array
with DS, must satisfyNps = [(6imp + d + dovt)/bimp |- FOr the
example considered! = 8, éimp = 4,dovi = 3, and Nps = 4.
Thus the array requires 8 MA modules with a working precision of
22 bits.
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