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Abstract

In this paper, we present a library of floating-point arith-
metic operators that can be dynamically reconfigured for ei-
ther real-number or complex-number mode, and for which
the precision is variable and is set prior to compilation.
The library is compared to corresponding modules built us-
ing the Xilinx Alliance CORE [3] library of floating-point
arithmetic operators for the implementation of a unit that
generates the inverse of a matrix. A significant lower cost
and total cycle delay is demonstrated.

1. Introduction

Reconfigurable arithmetic is a class of arithmetic opera-
tions that can change mode to perform either a real num-
ber or a complex number operation, based on switching
the functionality of the underlying components. The func-
tionality is determined at run time, based on setting the
value associated with a particular flag. This is accomplished
through programming both modes onto a chip and using in-
ternal multiplexers to select either real or complex mode.
This allows flexibility to support either mode after the chip
has been programmed, and allows reuse of hardware.

Several authors have investigated reconfigurable arith-
metic, specifically regarding real/complex number multi-
plication. Barazesh, et. al. [2] developed a VLSI sig-
nal processor with complex number arithmetic capability,
based on a multimode architecture that realizes either a real
or complex number multiplication by means of pipelining
stages. Aoki, et. al. [1] presented the design of a recon-
figurable parallel multiplier that realizes (i) single-precision
complex number multiplication; (ii) double-precision real
number multiplication; and (iii) a pair of single-precision
real number four-operand multiply-add operations.

In this paper, a library of arithmetic operators which

can be dynamically reconfigured is presented. Support
for variable-precision exponents is achieved through im-
plementing simple binary adders, subtractors, and shifters
based on bit-wide adders and bit-wide registers. Since the
size of such components is linear with precision, extension
is easily achieved. Support for variable-precision mantissas
requires implementations that are linear with precision. Tra-
ditionally, assuming precision n, floating-point adders and
subtractors have size O(n), but floating-point multipliers,
dividers, and square root units have size O(n2). To achieve
O(n) size, on-line arithmetic is adopted, using a redundant
signed-digit representation of operands. This require mod-
ules to convert from standard binary to redundant signed-
digit representation, and vice versa. An overview of on-line
arithmetic is presented next.

2. On-line arithmetic

On-line arithmetic is a class of arithmetic operations in
which all operations are performed digit serially, in a most
significant digit first (MSDF) manner. One of the key com-
ponents of on-line arithmetic is the on-line delay δ defined
as the number of operand digits necessary to generate the
first digit of the result. Each successive digit is generated
one per cycle. The total latency, assuming m-digit preci-
sion is δ + m − 1.

The inherent digit-pipeline characteristic provides the
means for efficient hardware implementations. On-line
arithmetic has several advantages, including: (i) the abil-
ity to overlap dependent operations, since output digits are
produces serially, most-significant digit first, enabling suc-
cessive operations to begin before previous operations have
completed, and (ii) support for variable precision, since
once a desired precision is obtained, successive outputs can
be ignored.
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3. Library of modules

The library of reconfigurable arithmetic modules can be
set for precision at compile time and can be set for radix
based on a flag rc (rc = 1 for complex radix 2j mode,
rc = 0 for real radix 4 mode). The input (I) and output (O)
ports for each module, and associated port bit-widths are
shown in Table 1, for input operands in0 and in1 and output
operand out0.

Port Width I/O Description

clk 1 I clock for internal flip-flops
reset 1 I reset for internal flip-flops
rc 1 I radix mode flag
enable in0 1 I enable input in0
enable in1 1 I enable input in1
exp in0 e I exponent of input in0
exp in1 e I exponent of input in1
man in0 4 I mantissa of input in0
man in1 4 I mantissa of input in1
enable out0 1 O enable output out0
exp out0 e O exponent of output out0
man out0 4 O mantissa of output out0

Table 1. Module input and output ports

The modules were coded in VHDL, implemented using
Xilinx Foundation 6.1, and individually mapped to a Virtex-
II Pro XC2VP7-7 FPGA. Parameters include the cost in
terms of CLB slices for general precision m radix-4 borrow-
save digit mantissas (each digit consisting of 4 bits), and
e-bit exponents, and the on-line delay δ.

Modules for implementing radix 2j/4 on-line
floating-point arithmetic instructions include: addition
(Ol2j4FloatAdd), multiplication (Ol2j4FloatMult), divsion
(Ol2j4FloatDiv), and square root (Ol2j4FloatSqrt). These
are shown in Table 2.

Module name Cost On-line delay
(CLB slices) δ

Ol2j4FloatAdd 2.5m + 4e + 78 3
Ol2j4FloatMult 22m + 3e + 56 9
Ol2j4FloatDiv 32.5m + 3e + 169 9
Ol2j4FloatSqrt 23.5m + 3e + 134 3

Table 2. Library of modules

4. Application

We apply the RAVIOLI library of reconfigurable
floating-point arithmetic modules toward the implementa-
tion of a unit that generates the inverse of a 2 × 2 matrix
which has either real elements or complex elements. Given
a matrix

M =
[

a b
c d

]
(1)

the inverse matrix is

M−1 =
[

d
ad−bc

−b
ad−bc−c

ad−bc
a

ad−bc

]
(2)

To generate M−1 requires two multiplications and one
subtraction to produce the denominator (or equivalently the
determinant of matrix M), and four divisions to produce the
elements of M−1. We compare the design to a correspond-
ing design using networks of the Xilinx Alliance CORE
real-number floating-point arithmetic operators [3], where
complex operators are constructed as networks of real oper-
ators. The cost results in terms of total Virtex CLB slices,
and throughput results in terms of computed bits per cy-
cles, are shown in Table 3, for precisions of 24-bit man-
tissas (both real and imaginary components) and 8-bit ex-
ponents. For the implementation using the RAVIOLI mod-
ules, the 24-bit binary real and imaginary components of the
mantissa are converted to/from a unified 24-digit radix 2j/4
mantissa by conversion units before/after matrix inversion
computation.

Design Cost Throughput
(CLB slices) (bits/cycle)

Alliance CORE 16216 0.67
RAVIOLI 3892 1.09

Table 3. Results for matrix inversion
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