
Arithmetic Processor for Solving Tridiagonal
Systems of Linear Equations

Miloš D. Ercegovac
Computer Science Department

Univ. of California at Los Angeles

Jean-Michel Muller
CNRS-Laboratoire CNRS-ENSL-INRIA-UCBL LIP,

Ecole Normale Superieure de Lyon, France

Abstract— We present a method and organization of an
arithmetic array processor for solving tridiagonal systems of
linear equations. The method uses online arithmetic approach
which allows parallel computation of the result digits of the
solution vectors. The basic operators are digit-vector by digit
multiplication and redundant addition which results in precision-
independent cycle time. The method takes about m carry-free
cycles to obtain m digits of the solutions. Details of a processor
array organization implementing the method and a comparison
with a conventional approach are discussed.

INTRODUCTION

Tridiagonal (TD) systems are frequently used in numerical
methods [2], [7]. Examples include finite-difference approx-
imations to partial differential equations and interpolation
with splines. Besides using sequential algorithm such as the
Thomas’ algorithm [11], many parallel TD system solvers
have been developed for supercomputers of array and pipeline
type, the main approaches being cyclic odd-even reduction
and recursive doubling methods [8], [1], [9], [10]. All these
solvers were implemented in software. Various scheme were
proposed to alleviate corresponding communication problems
between processors and memories. This paper presents a direct
hardware-oriented approach for solving TD systems intended
for application-specific architectures or accelerator coproces-
sors. Of particular interest are reconfigurable architectures
implemented with FPGAs and softcore processors allowing
efficient implementation of the primitive arithmetic operations
used by the proposed method.

I. THE PROPOSED APPROACH

We solve the linear diagonally-dominant system L

L : A · y = b (1)

iteratively using MSDF serial arithmetic [3], [6], known as the
E-method.

The coefficient matrix A of order N is

1Copyright 2006 SS&C. Published in the Proceedings of the 40th Asilomar
Conference on Signals, Systems, and Computers, October 29 - November 1,
2006, Pacific Grove, California, USA.

A =


1 a0,1 0 0 0 0

a1,0 1 a1,2 0 0 0
0 a2,1 1 a2,3 0 0
0 0 a3,2 1 a3,4 0
0 0 0 a4,3 1 a4,5

0 0 0 0 a5,4 1


For convergence, the coefficient matrix has to be diagonally

dominant as indicated above, i.e.,∑
j 6=i

|ai,j | < 1

with more specific constraints given later in the paper.
The solution vector is y = (y1, . . . , yN) and the right-hand

side vector is b = (b1, . . . , bN).
The algorithm for solving the system L is

1. [Initialize]
w[0] = b; d[0] = 0 ;

2. [Recurrence]
for j = 0 . . .m− 1

v[j] = r(w[j]−Ad[j]);
d[j + 1]← SEL(v̂[j]);
w[j + 1]← v[j];
y[j + 1]← CONV ERT (y[j], SEL(v̂[j]))

end for
3. [Result]

y [m]

where:
• The output digit selection function uses rounding of

v̂k[j], an estimate of vk[j] as argument, truncated to one
fractional bit:

dk(j+1) = SEL(v̂k[j]) =
⌊
v̂k[j] +

1
2

⌋
For radix 2 case, the selection function reduces to

1 if v̂k[j] ≥ 0.5
0 if − 0.5 ≤ v̂k[j] ≤ 0
−1 if v̂k[j] ≤ −1

• The residual vector at step j is

w[j] = (w1[j], . . . , wN [j])

• The result digit-vector at step j is

d[j] = (d1[j], . . . , dN [j])

where digit dkj ∈ {−1, 0, 1} is the j-th digit of the k-th
solution component

yk =
m∑

j=1

dkj2−j

• CONV ERT performs on-the-fly conversion [6] of the
redundant result digits produced serially into a conven-
tional digit-parallel form.

We now discuss the convergence conditions of the algo-
rithm. For simplicity, we focus on radix-2 iterations. Adap-
tation to higher radices is straightforward. The iterations
converge to the desired result if vector w[j] is bounded.
Define constants ξ, α and ∆ (the overlap between the selection
intervals 0 ≤ ∆ < 1) such that∑

j 6=i

|ai,j | ≤ α (2)

for each row of the coefficient matrix A and{
|bk| ≤ ξ

|wk[j]− ŵk[j]| ≤ ∆
2

Since |dk(j−1)− ̂wk[j − 1]| ≤ 1/2 due to the rounding rule
of the selection function, from the residual recurrence we find

|wk[j]| ≤ 2
(

1
2

+
∆
2

+ α

)
= 1 + ∆ + 2α. (3)

To achieve this bound, we must assure that a suitable choice of
dkj in {−1, 0, 1} is possible. This implies that |wk[j]| should
not be larger than 3/2, giving immediately the following
condition

∆ + 2α ≤ 1
2

(4)

For ∆ = 0 (no overlap, non-redundant residual), the bound on
the sum of off-diagonal elements (absolute value) in a row is
α = 1/4. For ∆ = 1/4, α = 1/8. Since |wk[0]| must not be
larger than 3/2, we get for the bound on the initial values

ξ ≤ 3
2

(5)

The E-method has the following features:

• Each solution component yk is evaluated on a separate
MSDF multiply-add module.

• The module uses a digit-vector × digit multiplication and
a redundant addition, i.e., carry-save or signed-digit form.

• The method eliminates the use of explicit division.
• For higher radix r, which has stricter convergence con-

ditions, suitable prescaling is used.

Module 1

On-the-Fly
Converter

y
1

d
2j

d
1j

d
0j

b1a1,0 a1,2

[4:2] ADDER

MULT. GEN.

d
0j

REGISTER

a1,0

MULT. GEN.

d
2j

REGISTER

a1,2

REGISTER

REGISTER

b1

S

d
1j+1

Fig. 1. Basic module block diagram and organization.

A. Basic Module

The basic module implements the residual recurrence

w1[j+1]← r(w1[j]−a1,0d0j−a1,2d2j−d1j+1) = v1[j] (6)

(for i = 1) and the corresponding digit selection function

d1(j+1) = SEL(v̂1[j]) (7)

The module organization is shown in Figure 1.
It consists of a [4:2] adder, two multiple generators which

are implemented as digit vector by digit multipliers, and four
registers. To avoid carry-propagation in multiple generators,
the output can be obtained in a redundant form (e.g., sum-
carry vectors) and the residual adder becomes a [6:2] adder.
The output digit is selected as mentioned above. There are
also four registers storing two coefficients, and a sum-carry
representation of the residual. In the case of radix 2, the
multiple generators are reduced to multiplexers.

B. General Scheme for a TD System Solver

Figure 2 depicts a general organization of a TD solver:
for an N -the order system, N basic modules are used. These
modules have two digit-serial inputs, connected to the left and
right adjacent modules (except the first and the last module),
one digit-serial output, and two parallel ports per module to
load the coefficients. The output from each module is in a
redundant form which, if needed, can be converted using on-
the-fly converters into a conventional 2’s complement parallel
form. There is no extra delay of this conversion, i.e., it is
performed in parallel with the main digit recurrence.

The approach allows easy extension of the order of the
system being solved or/and of the precision. If modules are
augmented by a 2k-register FIFO, the N module scheme
can implement a solver for a TD system of order kN , or,
alternately, handle precision k times the precision of the basic
module. In either case, the recurrence cycle cycle is k times
longer than the basic module cycle.

parallel serial

Initialization inputs not shown

Module 0 Module 1 Module 2 Module 3 Module 4

d
5j

Module 5

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

y
0

y
1

y
2

y
3

y
4

y
5

d
4j

d
3j

d
2j

d
1j

d
0j

d
4j

d
3j

d
2j

d
1j

d
0j

Fig. 2. General Scheme for a TD Solver.

II. EXAMPLE 1: ONLINE IMPLICIT METHOD FOR SOLVING
PDES

As an example of the application, we present the use of
the proposed approach in implementing the implicit method
for solving partial differential equations, originally developed
in [12]. The parabolic equation with appropriate initial and
boundary conditions

52Φ = k
∂Φ
∂t

(8)

can be solved by implicit methods in which derivatives with
respect to time are approximated by backward differences.
These methods are always computationally stable. However,
such a method requires solving a sparse system of linear
equations. We show how to use the E-method in solving this
system. The finite difference equation for system (8) at the
point (i, t) is

1
∆x2

(Φi−1,t − 2Φi,t + φi+1,t) =
k

∆t
(Φi,t − Φi,t−∆t (9)

Arranging (9) leads to the following finite difference system
for the E-method

−pΦi−1,t + Φi,t − pΦi+1,t = qΦi,t−∆t (10)

where p = (2 + k∆x2

∆t)−1, q = pk∆x2

∆t and 0 ≤ t ≤ N∆t.
This system corresponds to the following tridiagonal system

of linear equatuions suitable for the application of the E-
method:


1 −p 0 0 0 0
−p 1 −p 0 0 0
0 −p 1 −p 0 0
0 0 −p 1 −p 0
0 0 0 −p 1 −p
0 0 0 0 −p 1




Φ1,t

Φ2,t

Φ3,t

Φ4,t

Φ5,t

Φ6,t



= q


Φ1,t−∆t

Φ2,t−∆t

Φ3,t−∆t

Φ4,t−∆t

Φ5,t−∆t

Φ6,t−∆t

 + p


Φb1

0
0
0
0

Φbn



where Φb1, Φbn are the boundary conditions. For the conver-
gence of the E-method it was established that p ≤ 0.2,which
can be achieved by ∆t ≤ k∆x2/3 [12].

The expressions on the right-hand side are computed using
two left-to-right carry-free (LRCF) multipliers [4] and online
adder [6], combined into OMAU module with a total online
delay δRHS = 3+2 for r = 2. The TD solver uses a modified
E-method in which the right-hand side elements are used in
the MSDF manner [12], [5]. Its online delay is δE = 2. The
total online delay for one time sweep is ∆ = 7 (plus 1 cycle to
output the result digit). For a fully unfolded implementation
which has the lowest latency, we need dm/8e × n OMAUs
and E-method basic modules. Figure 3 illustrates the overall
scheme.

Module 0 Module 1 Module 2 Module 3 Module 4 Module 5

OMAU OMAU OMAU OMAU OMAU OMAU

Module 0 Module 1 Module 2 Module 3 Module 4 Module 5

OMAU OMAU OMAU OMAU OMAU OMAU

Module 0 Module 1 Module 2 Module 3 Module 4 Module 5

bi,t

Φi,t+∆t

Φi,t+m’∆t

m’=ceil(m/8)

n=6

Fig. 3. Unfolded Implementation of Parabolic Equation Solver

The cycle time tcycle of the recurrence loop of the E-
method, measured in full-adder delays (tFA), is estimated as

tcycle = tSEL + tMG + t[4:2] + treg = 4tFA

is larger than the OMAU cycle. The component delays are:
• tSEL = 1.5tFA is the delay of the selection function,
• tMG = 0.5tFA is the delay of the multiple generator

network,
• t[4:2] = 1.5tFA is the delay of the redundant adder,
• treg = 0.5tFA.
The overall delay is estimated as

T (N,n,m) = [(δ+1)(N−1)+m+1]tcycle ≈ (8N +m)tcycle

(11)
The time of a sequential implementation of the Thomas’

algorithm for solving tridiagonal systems [11], assuming the
same cycle time for all operations, is

TS(N,n,m) ≈ (7n + 4)mNtcycle (12)

Consequently, the proposed scheme has a speedup O(mn)
with respect to the Thomas’ sequential algorithm. Clearly, the
cost of the proposed scheme is much higher than that of a

sequential implementation. Details of the cost comparison will
not be discussed here.

III. EXAMPLE 2: SOLVING TRIDIAGONAL SYSTEMS WITH
SPECIAL COEFFICIENT MATRICES

The E-method is particularly efficient in solving tridiagonal
systems that have coefficient matrix consisting of simple
fractions. For example, consider the following system:

1 1/4 0 0 0 0
1/8 1 1/8 0 0 0
0 1/8 1 1/8 0 0
0 0 1/8 1 1/8 0
0 0 0 1/8 1 1/8
0 0 0 0 1/4 1




k0

k1

k2

k3

k4

k5


=

[
b0, b1, b2, b3, b4, b5

]T

The residual recurrence (shown for i = 1)

w1[j + 1] ← r(w1[j]− d0j2−3 − d2j2−3 − d1(j+1))
= v1[j] (13)

is very simple and leads to a greatly simplified implementation
of the basic module: a residual in a nonredundant (2’s com-
plement) form is sufficient; the adder for radix 2k is k +1+3
bits wide. For r = 2, the adder can be replace by an 8-input,
2-output combinational network.

The simplified module implementation for radix 2 case is
shown in Figure 4.

c-NETd
0j

d
2j

d
1j+1

b1

REGISTER

4

m

2 2

2

Fig. 4. Module for Special TD System

We estimate the cycle time as

tcycle = tc−net + treg ≈ (0.5 + 0.5)tFA = 1tFA (14)

and the total time to solve the TD system as

T ≈ mtFA (15)

The cost of a module is roughly

CM = 2× Cc−net + (m + 1)CFF (16)
≈ (2 + (m + 1)/2)CFA ≈ (3 + m)CFA

and the total cost of the solver for N = 6 shown in Figure 5
is

C ≈ (6m + 18)CFA (17)

which is much less than a cost of a single m×m multiplier.
The cost of on-the-fly converters is about 6×mCFA.

The TD solver for N = 6 is shown in Figure 5.

parallel serial

Initialization inputs not shown

Module 0 Module 1 Module 2 Module 3 Module 4

k
5j

Module 5

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

On-the-Fly
Converter

k
0

k
1

k
2

k
3

k
4

k
5

k
4j

k
3j

k
2j

k
1j

k
0j

k
4j

k
3j

k
2j

k
1j

k
0j

Fig. 5. A Solver for Special TD System

IV. SUMMARY

We have investigated online algorithms for a highly parallel
TD solver which consists of a linear array of basic mod-
ules. Each basic module implements an online multiply-add
operator with a cycle time independent of precision due to
the redundancy in representation of the residuals. The latency
is m cycles for m digits of precision, i.e., equivalent to the
latency of a serial-parallel multiplier. The basic module has
a simple implementation and it communicates using digit-
serial method. This is advantageous in physical realization.
The proposed approach allows also simple mapping of larger
TD systems or/and larger precision on a fixed array of given
precision. The approach is suitable for variable precision
as well as for compound algorithms. The work in progress
include mapping of a TD solver to FPGA platforms with
soft cores which allow custom instruction sets. Such a set of
special instructions implementing primitive operations of the
E-method would simplify the use of the proposed arithmetic
processing approach.

REFERENCES

[1] B.L. Buzbee, G.H. Golub, and C.W. Nielson, “On Direct Methods for
Solving Poisson’s Equations,”, SIAM J. Numer. Anal., 7(4):627-656,
December 1970.

[2] G. Dahlquist and A. Bjorck, Numerical Methods, Englewood Cliffs, NJ,
Prentice-Hall, Inc., 1974

[3] M.D. Ercegovac, “A General Hardware-Oriented Method for Evaluation
of Functions and Computations in a Digital Computer”, IEEE Transac-
tions on Computers, C-26(7):667-680, July 1977.

[4] M.D. Ercegovac and T. Lang. Fast multiplication without carry-
propagate addition. IEEE Trans. Comput., C-39(11):1385–1390, Novem-
ber 1990.

[5] M.D. Ercegovac, J.M. Muller, and A. Tisserand, “FPGA implementa-
tion of polynomial evaluation algorithms.” Proc. SPIE on Field Pro-
grammable Gate Arrays (FPGAs) for Fast Board Development and
Reconfigurable Computing, volume 2607, pages 177–188, 1995.

[6] M.D. Ercegovac, T. Lang, Digital Arithmetic, San Francisco, Morgan
Kaufmann, 2004.

[7] G.H. Golub and C. Van Loan, Matrix Computations, 2nd Edition,
Baltimore and London, Johns Hopkins University Press, 1989.

[8] R.W. Hockney, “A Fast Direct Solution of Poisson’s Equation Using
Fourier Analysis,” J. ACM, 12:95-113, 1965.

[9] H.S. Stone, “An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations,” J. ACM, 20:27-38, 1973.

[10] H.S. Stone, “Parallel Tridiagonal Equation Solvers,” ACM Trans. Math.
Soft., 1:289-307, 1975.

[11] L.H. Thomas, “Elliptic Problems in Linear Difference Equations over a
Network,” Watson Sci. Comput. Lab. Rept., Columbia University, New
York, 1949.

[12] O. Watanuki, “Fast Parallel Solution of Partial Differential Equations:
Application of On-Line Methods to PDE Solvers,” UCLA Computer
Science Department, Internal Report, 1979.

