
On the Implementation of a Three-operand Multiplier

Robert McIlhenny

rmcilhen@cs.ucla.edu

Miloš D. Ercegovac

milos@cs.ucla.edu

Computer Science Department

University of California

Los Angeles, CA 90024

Abstract

A new approach for a three-operand multiplier is pro-

posed, using initial two-level Radix-4 recoding, in order

to reduce the cost and delay of other utilized methods. A

three-operand 4-bit multiplier is demonstrated as a model,

and serves as a building block for three-operand multipli-

ers of higher precision. The proposed method is shown to

yield a significant reduction in both the cost and delay of a

three-operand 4-bit multiplier.

1. Introduction

Much research has been done in the design of multi-

operand addition [3] [7] and in parallel multiplication[1] [5]

[8] [9]. In [2], the concepts of multi-operand addition and

parallel multiplication are combined, and a new scheme is

presented for the design of fast multi-operand multiplication.

A general � -bit multi-operand multiplier can be denoted

in terms of the precision of the operands and the product as� �
1 � � 2 � � � � � � �

; � � , where
� �

is the operand length of input	
, and � is the sum of the operand lengths:

� 

��� �

1

� � �
1�

In this paper, the emphasis will be on three-operand mul-

tiplication, in other words a
� �

1 � �
2 � �

3; � � multiplier. Three-

operand multiplicationoccurs often in functions of the form:
 
 � � � � , where � and � are vectors, and � is a scalar.

Other applications include calculating the linear address of a

variable-length three-dimensional array, and calculating the

determinant of a 3 � 3 matrix.

Three methods are considered in the implementation of

a three-operand multiplier: (1) cascade method; (2) ROM

method; and (3) proposed method. Analysis was done as-

suming operands of 4-bit precision. All multipliers are array

multipliers, where cost is measured in terms of equivalent

gates, as determined in [4], and delay is measured in terms

of equivalent XOR gates.

2. Cascade Method

The cascade method consists of two multipliers in series.

The first one multiplies two of the 4-bit operands to produce

an 8-bit intermediate product. The 8-bit intermediate prod-

uct is then multiplied by the third 4-bit operand to produce

a 12-bit product. This is shown in Figure 1.

4 4 4

8

12

4 x 4-bit

multiplier

8 x 4-bit

multiplier

Figure 1. Cascade implementation of three-
operand multiplier

Each multiplier can be divided into three stages: (1) par-

tial product generation; (2) array reduction; and (3) final-

level summation. Partial product generation can be per-

fomed by ANDing each of the bits of one operand with the

other. Another method is Radix-4 Booth recoding, which re-

duces the number of partial product bits by half. Both meth-

ods are considered and evaluated for the cascade method.

Array reduction is done using levels of (4:2) compressors,

denoted as the Modified Wallace scheme in [6], which re-

duces the array to two words, and has lower reduction delay

than the more conventional Wallace scheme consisting of



(3,2) counters. Final-level summation is performed using a

1-level 4-bit grouped Carry Lookahead Adder (CLA).

In generating the partial products, the non-recoding

(ANDing) method for a general � � � -bit multiplier, gener-

ates � � partial product bits. For the 4 � 4-bit multipler, this

results in 16 partial product bits. Likewise, for the 8 � 4-

bit multiplier, this results in 32 partial product bits. Thus,

a total of 48 bits are generated, using 2-input AND gates.

Assuming a 2-input AND gate has an estimated equivalent

gate count of 2 and a delay of 0 �5� � � � , the cost can be

estimated as 2
�
48� 
 96 equivalent gates, and the delay as

1� � � � .

The Radix-4 Booth recoding method for a general � � � -

bit multiplier, assuming � � � , generates
� � � 1� � �

2 �
partial product bits. For the 4 � 4-bit multiplier, this results in

10 partial product bits. Likewise, for the 8 � 4-bit multiplier,

this results in 18 partial product bits. Thus, a total of 28

bits are generated, using recoder modules and multiplexers.

Assuming the recoder has an equivalent gate count of 14 and

delay of 1� � � � , and the multiplexer has an equivalent gate

count of 6 and delay of 2� � � � , as detailed in [5], the cost

can be estimated as 14
�
2� � 6

�
28 � 
 224 equivalent gates,

and the delay as 5� � � � .

In reducing the partial product array, the height of the

original array is 4 for both the 4 � 4-bit and the 8 � 4-bit

multiplier, when non-recoding is used. Assuming a (4:2)

compressor, (3,2) counter, and a (2,2) counter have equiva-

lent gate counts of 14, 7, and 5, respectively, and the delay

of a (4:2) compressor is 3� � � � , this results in an equivalent

gate count of 9
�
14� � 3

�
7� � 2

�
5� 
 157, and a delay of

2
�
3� � � � � 
 6� � � � . When recoding is used, there is no

reduction stage, since the height of the array within each

multiplier is 2.

For final level summation, assuming the non-recoding

method is used, for the 4 � 4-bit multipler, two 4-bit words

are to be added, and for the 8 � 4-bit multiplier, two 8-

bit words are to be added. Assuming for a general � -bit

CLA, the cost is 54
� �

4
� equivalent gates and the delay is� �

4
� 2� � � � � , this results in an equivalent gate count of

54
�
3� 
 162, and delay of 7� � � � . The total cost of the

cascade method using non-recoding is 415 equivalent gates,

and the total delay is 14� � � � .

Assuming the recoding method is used, for the 4 � 4-bit

multiplier, two 6-bit words are to be added, and for the 8 � 4-

bit multiplier, two 10-bit words are to be added. Considering

the same assumptions as before, and in addition assuming

adding two 2-bit words has an equivalent gate count of 12,

this results in a equivalent gate count of 54
�
3� � 12

�
2� 


186, and a delay of 9� � � � . The total cost of the cascade

method using recoding is 410 equivalent gates, and the total

delay is 14� � � � .

3. ROM Method

The ROM method is presented in [2], consisting of uti-

lizing the operands to address 256 � 8-bit ROM modules and

producing the appropriate table-lookup result. At the first

level, partial product words are referenced, and at the suc-

cessive levels, array reduction is performed by referencing

the appropriate partial sum at the address corresponding to

decoding various partial product bits,until the actual product

is obtained. This approach is shown in Figure 2.

R
O

M
R

O
M

R
O

M
R

O
M

R
O

M
R

O
M

R
O

M
R

O
M

R
O

M
R

O
M

R
O

M

Op 1

Op 2

Op 3

Figure 2. ROM implementation of three-
operand multiplier

This approach consists of a 4-level network of eleven

256 � 8-bit ROM modules. Each ROM module decodes an

8-bit address into 1 of 256 values, and the referenced values

are stored within registers. The cost of an individual256 � 8-

bit ROM module can be estimated as 6
�
256� � 1

�
2048� 


3584 equivalent gates, and the delay can be estimated as

3� � � � . This results in a total equivalent gate count of

11
�
3584� 
 39424, and total delay of 4

�
3� 
 12� � � � .

4. Proposed Method

The proposed method consists of initially producing all

the partial product bits by means of two-level Radix-4 re-

coding. A simpler method is to use 3-input AND gates to

AND together all the bits of the three operands. However,

this would require 4 � 4 � 4 
 64 3-input AND gates to

generate 64 partial product bits. This also creates an array

of height 12, causing the array stage to have a relatively high

cost as well. The details are not given, but the implementa-

tion cost of using 3-input AND gates to generate the partial

product bits, and performing array reduction and final-level

summation as before, is 636 equivalent gates, with a delay



of 14� � � � . This has neither an advantage over the other

methods in terms of cost nor delay.

Initial two-level recoding is advantageous for three-

operand multiplication in that it generates even fewer partial

products than one-level recoding. One-level recoding re-

duces the number of partial products to about one-half, while

two-level recoding reduces the number of partial products to

about one-fourth. At the first stage of the proposed approach,

the four bits of one operand are recoded, and the four bits

of another operand are used to select the appropriate partial

product bits. This generates two 5-bit words. At the second

stage, the four bits of the third operand are recoded, and the

bits of the two 5-bit words are used to select the appropriate

new partial product bits. This generates four 6-bit words.

Thus the total number of partial product bits generated is

4
�
6� 
 24. Assuming the same cost and delay of a recoder

as stated for the cascade method, the cost of recoding for the

proposed method is: 14
�
2� � 6

�
10� � 14

�
2� � 6

�
24� 
 260

equivalent gates, and the delay is 5� � � � .

The third stage consists of array reduction. Since the

array is of height 4, this requires one level of (4:2) com-

pressors, with a cost of 77 equivalent gates, and a delay of

3� � � � . The fourth stage consists of a 1-level 4-bit grouped

CLA that operates over 6-bit input words. This has a cost

of 66 equivalent gates, and a delay of 4� � � � . The total

cost for the proposed method is 403 equivalent gates, and

the delay is 12� � � � . The stages of the proposed approach

are shown in Figure 3.

5. Evaluation

The three methods for three-operand 4-bit multiplication

are compared in terms of cost and delay. The results, con-

sidering both non-recoding (Non-rec) and recoding (Rec)

generation of partial product bits, are shown in Table 5.

Method PP Gen Cost Delay

Cascade Non-rec 415 14

Rec 410 14

ROM —— 39424 12

Proposed Rec 403 12

Table 1. Comparison of 4-bit approaches

As is shown, the proposed method has the lowest cost and

along with the ROM method has the lowest delay, making it

an optimal approach for three-operand 4-bit multiplication.

6. Extension toward other multipliers

The methods presented for implementing three-operand

4-bit multiplication lead to the design of three-operand gen-

4

Recoding

Recoding

4:2 Compressor
Reduction

Carry Lookahead
Adder

8

4

4

5

6 6

5

6
4 2

77 2

Figure 3. Proposed implementation of three-
operand multiplier

eral � -bit multipliers, as well as general � -operand multi-

pliers, which will be discussed below.

6.1. Three-operand � -bit multiplication

The methods discussed for three-operand 4-bit multi-

plication can be applied to general three-operand � -bit

multiplication. The cascade method is implemented as a� � � -bit multiplier and a 2� � � -bit multiplier in se-

ries. For general � -bit operands, assuming non-recoding,� 2 � 2� 2 
 3� 2 partial product bits are generated. As-

suming recoding, � �
2 � � � � 1� bits are generated by the first

recoder, and � �
2 � �

2� � 1� bits are generated by the second

recoder, for a total of � 3� 2� 2�
2 � bits. The height of the ar-

ray for the first multiplier is � �
2 � , as well as for the second

multiplier. The first CLA operates over operands of length

2� � � log2 � � , and the second CLA operates over operands

of length 3� � � log2 � � .

The ROM method for general three-operand � -bit multi-

plication grows exponentially with � . The network of ROM

modules also grows more complex, Thus it is impractical

for relatively large values of � .

The proposed method can be extended toward general

three-operand � -bit multiplication in the same way for 4-

bit operands, except that the cost is a function of � � � 3 � .



Specifically, for general � -bit operands, the number of par-

tial product bits generated by ANDing the operand bits is � 3.

For two-level recoding the number is: � � 3 � 2� 2

4 � , which is

still � � � 3 � . As � increases, the difference in the number of

partial product bits generated by the cascade method and the

proposed method is significant. For instance, considering� 
 16, the cascade method generates 768 bits without re-

coding, and 400 bits with recoding. The proposed method,

though, generates 1152 even with two-level recoding.

As the cost for the proposed becomes much larger than

the cascade method as � increases though, the delay for

the proposed method becomes significantly smaller than the

cascade method. The comparison of cost and delay for the

cascade and proposed methods for various values of � are

shown in Figures 4 and 5, where the cascade method is

assuming recoding.

4 8

4000

2000

Cascade

Proposed

Operand length

C
o

st
 (

eq
u

iv
al

en
t 

g
at

es
)

12 16

6000

8000

Figure 4. Comparison of Three-operand cost

6.2. General � -operand multiplication

The cascade method can be applied toward general � -

operand multiplication, consisting of
� � � 1� levels of mul-

tipliers, where at level  ,  � � � -bit multiplication is per-

formed. This method generates ! � 2
� ! � "

1 #
4

� � ! � "
1 #

2

� � � 2� 2 � partial product bits. The delay is a function

of � � � 2 � � , since each multiplier at level  utilizes a

CLA that operates over approximately
�  � 1� � bits, and$ � "

1% �
1

�  � 1� � 
 � � � 2 � � .
The proposed method can also be applied toward general� -operand multiplication, consisting of

� � � 1� initial re-

coding levels, (4:2) compressor array reduction, and a final

4 8

Cascade

Proposed

Operand length

D
el

ay
 (

X
O

R
 g

at
es

)

12 16

10

20

30

40

Figure 5. Comparison of Three-operand delay

level CLA. The number of partial products generated, how-

ever is � � � � � , which for large � is not feasible. The delay

though is of order � � � � � , so for feasible values of � , it

can significantly reduce the delay over the cascade method.

7. Conclusion

A new approach for a three-operand multiplier has been

presented. This approach utilizes two-level Radix-4 recod-

ing to reduce the cost and delay of other utilized methods.

This method can be extended as a building block for the im-

plementation of general three-operand � -bit multipliers, as

well as general � -operand � -bit multipliers. This approach

is attractive for high speed computer arithmetic design.

Acknowledgments. This research has been supported in part

by the NSF Grant MIP-9314172 “Arithmetic Algorithms and Struc-

tures for Low-Power Systems.”

References

[1] L. Dadda. Some schemes for parallel multipliers. Alta Fre-

quenza, 34:349–356, May 1965.

[2] H. Kobayashi. A fast multi-operand multiplication scheme.

Proceedings of the 7th Symposium on Computer Arithmetic,

pages 246–250, March 1981.



[3] R. Lim. High-speed multiplication and multiple summand

addition. 4th Symposium on Computer Arithmetic, pages 149–

153, October 1978.

[4] LSI Logic Corporation. LCA500K Preliminary Design Man-

ual. 1994.

[5] J. Mori, M. Nagamatsu, M. Hirano, S. Tanaka, M. Noda,

Y. Toyoshima,K. Hashimoto, H. Hayashida,and K. Maeguchi.

A 10-ns 54x54-b parallel structured full array multiplier with

0.5-& m cmos technology. IEEE Journal of Solid-State Cir-

cuits, 26(4):600–605, April 1991.

[6] V. Oklobdzija and D. Villeger. Improving multiplier design

by using improved column compression tree and optimizerd

final adder in cmos technology. IEEE Transactions on VLSI

Systems, 3(2):292–301, June 1995.

[7] S. Singh and R. Waxman. Multiple operand addition and mul-

tiplication. IEEE Transactions on Computers, C-22(2):113–

120, February 1973.

[8] W. Stenzel, W. Kubitz, and G. Garcia. A compact high-

speed parallel multiplication scheme. IEEE Transactions on

Computers, C-26(10):948–957, October 1977.

[9] C. Wallace. A suggestion for a fast multiplier. IEEE Transac-

tion on Electronic Computers, EC-13:14–17, February 1964.


