
On-line Algorithms for Complex Number Arithmetic

Robert McIlhenny

rmcilhen@cs.ucla.edu

Miloš D. Ercegovac

milos@cs.ucla.edu

Computer Science Department

University of California

Los Angeles, CA 90024

Abstract

A class of on-line algorithms for complex number arith-

metic is presented. These algorithms adopt a redundant

complex number system (RCNS) to represent complex num-

bers as a single number. Such a scheme simplifies the specifi-

cation of the design, and has the additionaleffect that single-

precision complex arithmetic can be easily reconfigured for

double-precision real arithmetic. We present cost
�

delay

comparisons with the more conventional approach to show

a significant improvement, demonstrating that the presented

algorithms are attractive for VLSI systems demanding com-

plex number operations.

1. Introduction

Algorithms for various on-line operations have been de-

veloped, analyzed, and implemented in actual arithmetic

units over the past two decades. These include algorithms

for various arithmetic operations, such as addition [5], mul-

tiplication [11], and division [11]. A design methodology is

presented in [6], and a tutorial overview is given in [5].

These algorithms assume operations in real number sys-

tems. However, complex number computations also have

imporantant roles in various signal processing and scientific

applications such as complex orthogonal transformations,

convolutions, correlations, and filtering [4]. Recent papers

have demonstrated the emergence of on-line algorithms for

complex number arithmetic. In [7], the computability of

complex addition by an on-line finite state automaton is

demonstrated. In [9], various on-line operators for complex

arithmetic assuming radix 2 and a borrow-save encoding

of the digits are presented. In this paper, algorithms for

various complex number operations are presented, assum-

ing a redundant complex number system (RCNS), which is

presented next.

2. Redundant Complex Number System

A RCNS, as proposed in [2], is a radix-(� �
) system,

in which digits are in the set � � � � � � � � 0 � � � � � � � , where� 	 2 and
 � 2 � 2
�
 �
 � 2 � 1. This allows a unified

representation of the real and imaginary components.

Redundancy is essential in on-line operations, since in

conventional number systems, the most significant digits

of the result cannot be determined until all operand digits

have been inputed and any carries have been allowed to

propagate fully. Redundancy is achieved by using a signed-

digit number representation [3]. The redundancy factor �
in a RCNS is:

� � �� 2 � 1

�
1�

A RCNS with � � 2, � � 2, and hence � � 2
3

is adopted,

since, for multiplication, producing vector multiples 2� and� 2� is merely a matter of left shifting the vector � appropri-

ately. This has an advantage over the digit set where � � 3,

which has to consider multiples 3� and � 3� , and has to

incorporate an extra addition stage to add � 2� and � � .

The actual representation of digits will be done using

an extension of borrow-save encoding [10]. Using this en-

coding, the value of a digit � � =
� � �� �1 � � �� �1 � � �� �0 � � �� �0 � is:

2� �� �1 � 2� �� �1 � � �� �0 � � �� �0.

Conversion from a sign-magnitude representation con-

sisting of a sign bit � and two binary digits: (� � �1 � � � �0) to

a radix-(2j) digit of weight
�
2

� � � �
using borrow-save en-

coding:
� � �� �1 � � �� �1 � � �� �0 � � �� �0 � has to consider four cases of�

:

Case 1:
�

mod 4=0 (Real, positive weight)� � �� �1 � � �� �1 � � �� �0 � � �� �0 � � � � � � �1 � � � � �1 � � � � �0 � � � � �0 �
Case 2:

�
mod 4=1 (Imaginary, negative weight)� � �� �1 � � �� �1 � � �� �0 � � �� �0 � � � � � � � 1 �0 � � � � � 1 �0 � � � � �1 � � � � �1 �

Case 3:
�

mod 4=2 (Real, negative weight)� � �� �1 � � �� �1 � � �� �0 � � �� �0 � � � � � � �1 � � � � �1 � � � � �0 � � � � �0 �
Case 4:

�
mod 4=3 (Imaginary, positive weight)� � �� �1 � � �� �1 � � �� �0 � � �� �0 � � � � � � � 1 �0 � � � � � 1 �0 � � � � �1 � � � � �1 �

Assuming fractional operands, the value of a number� � � � 1 � � � � � � � � , is:

� �
��

� 1

� � �
2
� � � � �

2�
Alternatively,

�
can be considered as having radix (-4)

real and imaginary components,
� !

and
� "

, respectively,

where:

� ! �
$

2 %�
� 1

� 2� � � 4� � � �
3�

� " � �
2
� �

$ &
1

2 %�
� 1

� 2� � 1

� � 4� � � �
4�

and
� � � ! � � � "

.

3. Basic operations

The basic operations for complex on-line algorithms in-

clude (1) complex addition; (2) complex vector by digit mul-

tiplication; and (3) shifting by 2j, which will be described

next.

3.1. Complex Addition

A radix (2j) on-line adder can be constructed as a modifi-

cation of the radix-2 on-line adder presented in [8] consist-

ing of PPM and MMP adder cells. The details of the adder

cells are shown in Figure 1, and the radix-2 on-line adder

is shown in 2. Modifying the design for radix (2j) consists

of: (1) considering two bit slices, (2) complementing the

carry-out, and (3) introducing extra delay registers due to

the interleaving of real and imaginary digits. The complex

on-line adder with an on-line delay ' � 2, is shown in

Figure 3.

3.2. Complex Vector by Digit Multiplication

Vector by digit multiplication for radix (2j) is de-

fined such that, given input vector
� � � � 0 �

0 � � 1 � � 2 � � � � � � � � � � � 1 � 0 � � � � 2 � 0� , where each digit� � � � � �� �1 � � �� �1 � � �� �0 � � �� �0 � and digit � "
, then to compute(� � � "

, where
(� �)

0 �)
1 � � � � �) � � , each output digit

) �
has the following functionality:

+ + -

-+
PPM

- - +

- +
MMP

a b c

d e

a b c

d e

d=ab+ -c (a+b)

e=a + b c+

d=ab+ -c (a+b)

e=a + b c+

(a) (b)

Figure 1. (a) PPM adder cell; (b) MMP adder

cell

x
k

+ y
k

+ x
k

-

+ + -

-+
PPM

- - +

- +
MMP

D

y
k

-

D

z
k-2

- z
k-2

+

D

Figure 2. Radix-2 On-line Adder

) � �

*+++++,
+++++-

� � �� �0 � � �� �0 � � �� � 2 �1 � � �� � 2 �1 � if � � � 2� � �� �1 � � �� �1 � � �� �0 � � �� �0 � if � � � 1�
0 � 0 � 0 � 0� if � � � 0� � �� �1 � � �� �1 � � �� �0 � � �� �0 � if � � � 1� � �� �0 � � �� �0 � � �� � 2 �1 � � �� � 2 �1 if � � � 2

�
5�

3.3. Shifting by 2j

Shifting a vector (multiplying) by 2j for radix (2j) is

defined such that to compute
(� �

2
� � � , for each digit of(

,
) � � �) �� �1 �) �� �1 �) �� �0 �) �� �0 � :

) �� �1 � � �� � 1 �1) �� �1 � � �� � 1 �1) �� �0 � � �� � 1 �0) �� �0 � � �� � 1 �0
�
6�

x
k,1

+ y
k,1

+ x
k,1

-

+ + -

-+
PPM

x
k,0

+ y
k,0

+ x
k,0

-

+ + -

-+
PPM

- - +

- +
MMP

y
k,1

-

- - +

- +
MMP

D

D

y
k,0

-

D

D

D

D

z
k-2,1

- z
k-2,0

+ z
k-2,0

- z
k-2,1

+

Figure 3. Complex On-line Adder

4. Complex On-line Algorithms

In this section, on-line algorithms for complex number

arithmetic are presented, along with their on-line delay. The

on-line delay of an operation is defined as the number ' such

that the
�

th result digit is produced after ' � �
digits of an

input are available.

The algorithms consider inputs
�

and . , and output
(

,

where

� � ��" 1

� " �
2
� � � " �

7�

. �
��" 1

� " �
2

� � � " �
8�

(�
��" 1

) " �
2

� � � " �
9�

In on-line form,

� � �
� � /�" 1

� " �
2

� � � " � � 0 � 1 � � � � / �
2
� � � � � / �

10�

. � �
� � /�" 1

� " �
2

� � � " � . 0 � 1 � � � � / �
2

� � � � � / �
11�

(� �
� � /�" 1

) " �
2

� � � " � (0 � 1 �) � � / �
2
� � � � � / �

12�

Operations that are considered include multiplication:(� � 1 . and division
(� � � . , which are presented

next.

4.1. Complex On-line Multiplication

We want to compute
(� � . . At the

�
th step:2 3 4 5 3 6

1 7 3 6
1 8 9 5 3 : 3 ; < 8 7 3 6

1 = 3 ; < > 9 2? > 6 3 6 <

Letting @ � � � � � . � � �
2
� � �

, define the
�

th residual as:A � � @ � � (� � 1

�
2

� � �
Then the residual recurrence is:B 3 4 C D E F G 9 9 2? > B 3 6

1 8 9 5 3 : 3 ; < 8 7 3 6
1 = 3 ; < > 9 2? > 6 < >

The algorithm for complex on-line multiplication is shown

below:

Algorithm COLMUL

Step 1. [Initialization]H
0 I 0; J 0 I 0;

Step 2. [Recurrence]

for K I 1 L M M M L N do:H 3 I O P Q R S T T 2U V H 3 6
1 W T X 3 Y 3 ; < W J 3 6

1 Z 3 ; < V T 2U V 6 < V
[3 I \] S T T 2U V H 3 6

1 W T X 3 Y 3 ; < W J 3 6
1 Z 3 ; < V T 2U V 6 < V

The implementation consists of appropriate registers to

store
�

and . and append digits � � and � � , vector-by-digit

multipliers for computing
� � � � and . � � 1� � , and a borrow-

save adder to add
� � � � , . � � � , and

A � � 1. The design is

shown in Figure 4. The cost and delay of each module for

general ^ -digit precision is shown in Table 2.

Reg X

Vector Digit

Reg Y

Vector Digit

D

x
k

y
k

Borrow-Save Adderz
k- _

Reg W

append append

Figure 4. Complex On-line Multiplier

Module Cost Delay

equiv. gates

Reg 6^ � 5 ` a b c � 2` d e e
Vector

�
Digit 12^ � 1 ` f g a h 4 i 1 j

BS Adder 24^ � 8 6` a b c
Table 1. Parameters of Modules

4.2. Complex On-line Division

We want to compute
(� � � . . At the

�
th step:

X 3 k J 3 I X 3 6
1

k J 3 6
1 W Z 3 ; < T 2U V 6 3 6 < l m 3 6

1

Y 3 ; < T 2U V 6 3 6 <

Letting n � be the scaled partial quotient at step
�

:

n � � � � � � . � � �
2

� � �
Then:o 3 4 9 5 3 6

1 p 7 3 6
1

> 9 2? > 3 8 = 3 ; < 9 2? > 6 < q 2 3 6
1

: 3 9 2? > 6 <

Letting
) � be the

�
th computed quotient digit, then the

�
th

residual is:A � � n � � . � � 1

(� � 1

�
2

� � �
The residual recurrence is:B 3 4 9 2? > 9 B 3 6

1

q 7 3 6
1 r 3 6

1

> 8 9 = 3 ; < q 2 3 6
1

: 3 ; < > 9 2? > 6 <

The algorithm for complex on-line division is shown below:

Algorithm COLDIV

Step 1. [Initialization][
0 I 0;

m
0 I 0;

H
0 I X 0;

Step 2. [Recurrence]

for K I 1 L M M M L N do:H 3 I T 2U V T H 3 6
1

l [3 6
1 J 3 6

1

V W T Z 3 ; < l m 3 6
1

Y 3 ; < V T 2U V 6 <
[3 I s t u T vH 3 V

where the selection function w x y � vA � � is computed accord-

ing to a lookup table that takes a 2-digit (8-bit) truncated

value of
A � and returns the appropriate quotient digit

) � � / .

The implementation consists of appropriate registers to

store
A

, . , and
(

and append digits � � , � � and
) � , vector-

by-digit multipliers for computing
) � � 1 . � � 1 and

(� � 1 � � ,

a borrow-save adder to add
) � � 1. � ,

(� � 1 � � , and
A � � 1,

and a lookup table to compute
) � . The design is shown in

Figure 5.

Reg Z

Vector Digit

Reg Y

Vector Digit

D

y
k

Borrow-Save Adder

Reg Wx
k

SEL

append

append append

D

Figure 5. Complex On-line Divider

5. Evaluation

The proposed designs (Prop) were compared to the con-

ventional (Conv) approach consisting of a network of real

on-line operators. In the conventional approach, the real and

imaginary components are computed according to the equa-

tions in Table 2, assuming
� � � z � { � � , . � � | � } � � , and(� � ~ � � � � , where

(
=

�
op. . The implementations were

mapped onto Altera 10K-20 FPGA’s [1] and measured for

cost in terms of the number of logic cells, and critical delay,

as shown in Table 3, assuming a total precision of 8 digits

(4 for the real component, 4 for the imaginary component).

For multiplication, two conventional approaches were

considered, including the standard four-multiplications

and two additions (4M2A) approach, and the three-

multiplications and five additions (3M5A) approach pre-

sented in [12]. For division, four real on-line multipliers,

two real on-line dividers, two square units, and three real

on-line adders were used.

Op Result~ �
Mul

(4M2A)
� z | � { } � � z } � { | �

(3M5A)
� z � { � } � z � | � } � � z � { � } � { � | � } �

Div � � � � �� 2 � � 2 � � � � �� 2� � 2

Table 2. Conventional Complex Equations

Op Cost ' Total Delay (ns)

Mul Prop 418 2 190.8

4M2A 810 4 210.0

3M5A 656 6 279.9

Div Prop 587 4 233.2

Conv 1076 10 275.6

Table 3. Comparison of Approaches for preci-

sion ^ � 8

6. Conclusion

On-line algorithms were presented for complex num-

ber arithmetic using a redundant complex number system

(RCNS) to represent complex numbers as a single number.

Implementations were compared to a network of real on-line

adders, to demonstrate a significant reduction in cost and in

delay.

Such algorithms can be further developed for other op-

erations such as complex square-root, complex square, and

composite algorithms can be designed for actual applica-

tions involving complex numbers, such as the Fast Fourier

Transform (FFT), recursive digit filters, and various other

applications.

Acknowledgments. This research has been supported in part

by the MICRO Grant 98037 “Reconfigurable Hardware for Nu-

merically Intensive Computations”, Raytheon Systems Company

and Xilinx

References

[1] Altera-Corporation. Altera Max+Plus II Manual. San Jose,

CA, 1996.

[2] T. Aoki, Y. Ohi, and T. Higuchi. Redundantcomplex number

arithmetic for high-speed signal processing. IEEE Workshop

on VLSI Signal Processing, pages 523–532, October 1995.

[3] A. Avizienis. Signed digit number representations for fast

parallel arithmetic. IRE Transactions on Electronic Comput-

ers, EC-10:389–400, 1961.

[4] B. Barazesh, J. Michalina, and A. Picco. A VLSI signal

processor with complex arithmetic capability. IEEE Trans-

actions on Circuits and Systems, 35(5):495–505, May 1988.

[5] M. Ercegovac. On-line arithmetic: an overview. Real Time

Signal Processing VII, SPIE-495, pages 86–93, 1984.

[6] M. Ercegovac and T. Lang. On-line arithmetic: a design

methodology and applications. 1988 IEEE Workshop on

VLSI Signal Processing, pages 252–263.

[7] C. Frougny. Parallel and on-line addition in negative base

and some complex number systems. Euro-Par ’96 Parallel

Processing, 2:175–182, 1996.

[8] A. Guyot, B. Hochet, and J.-M. Muller. JANUS, an on-

line multiplier/divider for manipulating large numbers. 9th

IEEE Symposium on Computer Arithmetic, pages 106–111,

September 1989.

[9] A. Nielsen. Number systems and digit serial arithmetic

(Ph.D. dissertation). Dept. of Mathematics and Computer

Science, Odense University, Denmark, 1996.

[10] A. Nielsen and J.-M. Muller. Borrow-save adders for real and

complex number systems. 2nd conference on real numbers

and computers, April 1996.

[11] K. Trivedi and M. Ercegovac. On-line algorithms for division

and multiplication. IEEE Transactions on Computers, C-

26:681–687, July 1977.

[12] B. Wei, H. Du, and H. Chen. A complex-number multiplier

using radix-4 digits. Proceedings of the 12th Symposium on

Computer Arithmetic, pages 84–90, 1995.

