Design of high-radix digit-slices for on-line computations
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ABSTRACT

We present a design of high-radix digit-slices for the implementation of on-line multiply-add operator (OMA).
Our evaluation of performance and cost shows that speedups above 1.5 can be obtained with respect to radix 2
at reasonable increase in cost. The design and evaluation are based on the Xilinx FPGAs. We also discuss the
use of OMAs modules in solving linear recurrences.

Keywords: computer arithmetic, high radix on-line arithmetic, multiply-add, field-programmable gate arrays
(FPGAS), linear recurrences, redundant number systems.

1 Introduction

An on-line operator accepts the inputs serially, most-significant digit first, and produces the result in the
same manner. There is an on-line delay 6 between the j** input digit and the corresponding output digit —
usually 2 to 5 digit cycles. On-line modules are attractive for specific applications, in particular those requiring
long sequences of dependent operations as well as long precision. On-line arithmetic reduces the bandwidth of
inter-module connections to digit-serial links while allowing the overlap among data-dependent operations thus
reducing the total computation time.®*?

The paper presents preliminary results obtained in our investigation of high-radix designs for on-line arith-
metic. Most of the published designs use radix 2 or radix 4.!%1:'39 The on-line delay §, the radix r, the digit cycle
time ¢,, the number of pipeline stages p, and the number of cycles m are all interdependent and determine the
latency (total time) and throughput of the networks of on-line modules. Radix-2 modules are simplest to design,
have shortest digit cycle time but require the largest number of cycles. The choice of these parameters is not
obvious. For example, a higher radix reduces the number of cycles and on-line delay but increases the digit cycle
time. Increased pipelining decreases the cycle time while increasing the on-line delay. The problem addressed
here deals with a possibility of using designs with higher radices while managing the drawbacks so that a speedup
obtained and the cost are advantageous with respect to radix 2. We consider here an on-line multiply-add operator
(OMA). Multiply-add operators are frequently used in signal processing applications. On-line alternative is useful
when a sequence of multiply-add operations is needed to minimize the effect of data dependencies and reduce the
interconnections between the operators. As an example of its use we discuss an on-line scheme for solving linear
recurrences.' 10 We assume the reader is familiar with the structure and features of Xilinx FPGAs.16

The paper is organized as follows: first we present the basic on-line recurrence equation, followed by a discussion
on possible implementations for high-radix designs, a comparison of radix-2 and higher radices circuits, solving
linear recurrences on the VCC EVC board,'® and conclusion.



2 On-line algorithms for az + 5 (OMA) module

We now discuss an on-line algorithm for the multiply-add operation y = axz + b where @ is in parallel and =
and b in digit-serial form. All inputs are fractions, i.e., 1/2 < a,z,b < 1. The recurrence equation is derived
following [*]. At step j, the error between the actual and computed function values is bounded by

|az (] + bs] — ylj]| < v
where
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and zj,b; € {—p,...,p},p <7 and y; € {~7,...,7},7 > r. To simplify the selection of y;, we allow the output
digit set to be over-redundant. From the scaled residual:

W) =/ (az[j] + B[] — yli]) (1)
with the initial condition: W[0] = az[0] 4 b[0], we obtain the residual recurrence equation:
H[j-1]
Wil = rWlj — 1]+ =" (azj4s + bjrs) —y; (2)
20 —1]

From the residual bound W{j]| < w < 1 and the containment condition

maz(z[j — 1)) SwH+y=r+r 2 <l4y=r’ < —

=3,
we obtain the on-line delay é > 1 since p < (r — 1). Consequently, the residual recurrence is
Wil = rW[ji — U+ v azjts + bjys) — y}

The selection of the ouput digit y; is performed by taking the integer part of Z[j — 1], i.e., yj = [2[j — 1]].
The computation of the residual and the selection by truncation are illustrated bellow:
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where the most-significant transfer digit ¢ € {—1,0,1} and z is a signed digit in the set {—p, ..., p}.

There are two possibilities in dealing with the over-redundant output digits. One solution is to use a simplified
radix-r on-line adder to recode the output digit into a redundant set as discussed later. The overall timing relations
during on-line operation is shown bellow where y; =1; + 5541 :
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Another way of dealing with the over-redundant output digits is to use it directly (without recoding) in forming
the product a x z;. This may require an increase in reduction stages (increasing the delay), but in the other hand,
it will make possible to remove the output digit recoding from the circuit (reducing the delay). The step time
can be kept the same by the use of pipelining. Because of the large increase in the cost of multiple generation,
we do not consider this approach further.

3 Implementation of OMA module

The general diagram of the OMA module is shown in Figure 1.
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Figure 1: General Organization of OMA Module

The main components to implement radix-r digit-slices for the OMA module are: the radix-r signed-digit
adder SDA, which produces the residual W, the H network with the az; multiplier which produces the term
axj41 + bj41, and the output digit recoder O DR which produces y;. The on-line delay of implementation &;mp:
depends on the theoretical on-line delay é and the number of pipelined stages p in the network H, the redundant
adder SDA, and the recoder ODR. The cycle time ¢ is determined by the slowest stage in the pipeline.

Residual Adder. This adder is composed of basic radix-2 signed-digit adders (SDAs) organized in groups
of size k to implement a radix-2* adder. The structure of radix-8 SDAs and the basic radix-2 SDA are shown in
Figure 2. A radix-r SDA has three inputs u, v and #;,,, and two outputs ¢,4¢ and s, where u,v and s € D, and



the transfer digits ¢;, and ¢ou: € Spizr = {—1,0,1}. We consider the digits in radix r represented in Borrow-Save
(BS) code?® A digit d is in the set D, = {—(r—1),...,—1,0,1,...,(r— 1)}, and represented as a signed-bit vector
(di—1, ..., d1,do), with d; = (df — dy), df ,d; € {0,1}, and k = logsr. The value of the digit is d = Ef:_ol d; 2%
The function performed by a SDA is v + u + t;, = rtour + 5. The SDA we assume uses two levels of PPM
adders. A PPM module corresponds to a full-adder as described in [3]. The PPM module produces 2 binary
outputs, ¢ and u, from 3 binary variables z,y, and z, such that  + y — z = 2t — u. The switching expressions are
t=—zy+z 4y, andu=zPyd 2z A radix-tr SDA is composed of £ SDAs in radix 2. The implementation of
this module with FPGAs XC4000 uses 2k CLBs for a SDA, (k = loga(r)). The delay is equivalent to 2 F-function
generators (10ns) plus interconnection delay.
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Figure 2: Structure of a radix-8 Signed-Digit Adder

H Network (az; + b; generation). A basic operation in the generation of ax + b is the word-by-digit
multiplication (i.e., multiple generation). The multiple generation increases in complexity as the radix increases.
Let’s assume that the operand a is a vector of radix-r signed digits and z; is a single digit, all of them in BS form.
This assumption comes from the fact that z; is produced in the BS form and the insertion of b; is simplified if a
is in SD form as discussed later. A parallel multiplier to compute az; uses digit-by-digit primitive multiplications
of a by zj, az; = (an_12j,an_22;,...,a12;5,a0x;), with a; € D,. Each individual digit-by-digit multiplication
generates two-digit product (p, ¢) such that a;z; = rp; + ¢;, r > 2.

The digit-by-digit products are implemented at the binary level using signed bits (sbits). The matrix of partial
products in the sbit form for a;z; is:

(@7al) (e

The total number of sbits obtained with this product generation is k2. As each sbit multiplier requires one
CLB in the XC4000 FPGAs, the total number of CLBs used is k2. The total number of sbits, for a precision m
bits of the operand a and n radix-r digits is km. The multiple generator is the combination of all digit-by-digit
multiplications as shown in Figure 3.

We considered two possibilities to reduce the partial products: with SDAs and with FAs and HAs. The



second approach reduces the positive and negative parts of the sbits independently, and the individual results are
combined at the end to obtain the final multiplication result. Comparing both cases we concluded that the SDA
reduction is faster, requiring the same area as the FA reduction. The use of SDAs to reduce the partial products
is better because a SDA is a (2,1) counter with a reduction factor of 50%, while FAs are (3,2) counters with a
reduction factor of 33%. The number of stages in the reduction tree using SDAs is [log2(N)] where N is the
number of sbit rows. The delay and area used by the SDA reduction structure is:

delay = [log2(N)] x tspa

loga N
#CLBs=2x (Y _ N2)=2N(N-1)

=0

The reduction result of the digit-by-digit multiplication generates two radix-r digits. That forces the utilization
of another level of SDAs to obtain only one digit. To avoid this extra reduction level and make a structure more
suitable for digit-slice implementation we propose the organization shown below (and in dashed line in Figure 3).
This organization overcomes the problem of irregular structure in the reduction structure of the digit multiplier,
making it more suitable for VLSI and FPGA implementation. The slices shown in dashed lines are organized
in such a way that the digit multiplier receives two digits from operand a and transfer digits from its neighbor.
With these inputs it calculates the digit of az; 4 b; used in the slice. The following matrix of sbits is considered:
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A block diagram of the digit-slice is also shown in the Figure 3. A high degree of pipelining can be used.
This would increase the on-line delay while reducing the cycle time to a value close to the delay of a SDA. An
evaluation of this effects is presented in section 4.
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Figure 3: Organization with Digit Slices

The insertion of b; is done in the leftmost digit-slice. This slice is different from the other ones since the
reduction structure is specialized for reduction of transfer digits. Now we can explain that if @ is in conventional
form, the bit ao will be the sign bit and can be different than zero, using the space where b; would be inserted.
This would cause an extra level of SDAs to combine b; to form the residual W[j]. The use of BS code instead
of two’s complement will not make the circuit slower or more area consuming. The only disadvantage is that it
increases the amount of information that needs to be transferred during computation.



ODR recoder. This digit recoder is implemented as a simplified radix-r on-line adder with one operand
restricted to -1, 0, and 1 values. The most significant sbits of the digit ¢; are zeroes in the radix r representation.
In this case, the PPM modules at the upper level can be removed with proper interconnection. From the PPM
equations, assuming ¢ = z = 0, we have that ¢ = u = y. A radix-8 on-line recoder is shown in Figure 4. The two
least significant sbits are latched to synchronize the values between different cycles. Another latch is used for z5
to align the sbits in the output digit y;.
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Figure 4: Radix-8 On-Line Recoder.

The implementation of this module with FPGAs XC4000 uses k + 1 CLBs for a radix r = 2F recoder. The
delay is equivalent to 2 F-function generators plus latch delay (13ns) plus interconnection delay.

4 Comparison between OMAs designed for radix-2 and radix-r

This section compares the area and time used for radix-r and radix-2 organizations in computing a single
multiply-add result. The precision of z and b 1s m bits, and of the operand a is m, bits. The level of pipelining
in the multiplier of the digit-slice is p. For example, p = 1 if one level of latches is inserted in the H network.
Besides the on-line delay of the multiply-add algorithm (6 = 1), the recoder adds a delay érccoqer = 2 for r > 2
and brecoder = 3 for r = 2. For simplicity, in our estimates we do not consider the interconnection delay.

The area required by the implementations depends mainly on the precision of the operand a (mg), the
coefficient of the equation. It determines the number of digit-slices used. The precision of the result y can be
variable, depending only on the precision of # and b operands and the number of iterations executed in the OMA
module.

Using radix-2 digit-slices. The time to compute az + b using radix-2 OMA module is obtained as:
To = (m+ 62 — 1) (cycles)

62:6+p+6recoder = 1+P+3:p+4

The cycle time is dependent on the parameter p. Higher values of p results in a shorter cycle time. If p = 1,
the on-line delay 62 = 5 and the radix-2 digit-slice cycle time is equivalent to the propagation time of a SDA
(tspa) plus setup and propagation time of the latch. For p = 0, é2 = 4 and the cycle time increases by the sbit
multiplication time (equivalent to a function generator delay — 4.5ns).



The area used consists of the digit slices’ area and the on-line adder used for output generation. The total
number of slices is mg, + 1. Using XC4000 FPGA, a radix-2 digit slice takes 4 CLBs (2 CLBs for the radix-2 SDA,
1 CLB for the digit multiplier and 1 CLB to store the input a;). See Figure 5. The on-line adder uses 3 CLBs
(same area as a SDAj plus latches). The expression is (in CLBs):

Areas = (mg+ 1) x 4+ 3
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Figure 5: Radix-2 digit-slice for FPGAs

Using radix-r digit-slices The time to compute the result of m bits of precision, using radix-r digit slices

is:
m
Tr:(n—i—ér—l):([?] +6, —1)

where k = loga(r). The on-line delay is computed as:

6r:6+p+6recoder:1+p+2:p+3

The value of p can be at most ([loga(k)] + 1) = S + 1 (number of stages in the multiplier reduction plus the
partial product generation stage). With this maximum p, the cycle time is equivalent to a SDA propagation time
(tspa) plus setup and propagation time of a latch. Lets assume that the worst cycle time is (S + 2)tspa + tiaten
(the delay of the product generator is the same of an SDA, pessimistic assumption). If the pipeline stages are
correctly placed in order to minimize the resulting critical path, the cycle time can be calculated as:

S+2

tr = | ——|t tiate
[p+1]SDA+ latch

The total area used by this scheme is (in CLBs):

Mg

Arcar = ([Z2]+2) x 2k + (%1(3&:2_%”(“1)

where (3k% — 2k), 2k and (k + 1) are the number of CLBs used by a radix-r digit multiplier, a radix-r SDA and
a recoder, respectively.

Comparison of OMA designs The impact of p in the cycle time and the total time is presented in Table 1.
The increase in the pipeline level reduces the cycle time (shown in the table normalized to the propagation delay
of a SDA —tgpa), and increase the on-line delay of the implementation. The values of on-line delay and cycle
time were used to estimate the total time to obtain a result with m = 32 bits of precision. For this precision all



| Cycle time (number of tspa) |

Radix P S
0 1 3 4
4 3 2 1 1
8 4 2 2 1 2
16 4 2 2 1 2
32 5 3 2 2 1 3
[OLdelay [ 3 4 5 6 7 | |
| Total time (tspa) m=32 |
Radix P
0 1 2 3 4
4 54 38 20
52 28 30 16
16 40 22 24 13
32 45 30 22 24 13

Table 1: Impact of Pipelining On the Total Time and On-line Delay
| Total Area (#CLBs) |

Radix Precision (mq) k
8 16 32 64 128
2 39 71 135 263 519
4 59 107 203 395 779 2
8 97 178 313 610 1177 | 3
16 117 213 405 789 1557 | 4
32 176 326 551 1001 1976 5
| Speedup over radix 2
Radix Precision (m)
8 16 32 64 128
4 1.50 1.67 1.80 1.89 1.94
8 1.50 1.82 2.25 2.52 2.75
16 1.71 2.22 2.77 3.24 3.57
32 1.50 2.00 2.77 3.58 4.12
64 1.50 2.22 3.00 4.00 4.71

Table 2: Area, Time and Speedup for OMA modules in Different Radices

the radix r designs considered will compute the result in less time if a maximum degree of pipelining is used. For
small precision the impact of a large on-line delay (large p) is worse than for large precision.

Table 2 presents the area (number of CLBs in the XC4000) and speedup obtained using radix r OMAs.
Large speedups can be obtained for some radices, with corresponding increase in the area. Since the area
used is a function of the precision of operand a, one can limit the precision of the operand a, and continue
to have the possibility to compute  and b in variable precision. The designer need be aware of the relation
area and performance to select the best radix r implementation. A Figure of merit, commonly used in VLSI
implementations, was applied in our study (AT? — product of area and the square of the time) and the values
obtained show that for m, = 32 the best design is the radix-16 OMA. For m, = 8, the best design is radix-4
OMA. When the precision increases, the use of higher radix designs results in a more cost-effective solution.



5 OMA Module with precomputed multiples

Since the input a is a known coefficient, we can precompute the multiples az; for all possible values of z;.
The precomputed multiples are stored in a memory, addressed by z;. The scheme is presented in Figure 6. The
designer would have to prepare appropriate OMA configurations for different values of @ and download into the
FPGA the configuration that is needed.
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Figure 6: General Organization for OMA Module with Precomputed Values

Using XC4000, each CLB can be configured as a 16 x2 bit array of Read/Write Memory. With this capability,
the OMA may be designed with a RAM memory that is loaded as needed with the proper multiples of @ for a
particular radix from the Local Memory. This is probably the best solution since the FPGA configuration time
is larger than the memory access time.

We illustrate this approach by a high-level design of a radix-16 OMA module. We assume that z; is in BS
code, with 8 bits representing each radix-16 digit z;. In order to take advantage of the RAM configuration of
CLBs in the XC4000 we propose a decomposition of azx; as follows:

a-z; :a(;.?:;F —23]»_):[1~23;_+(—[1):L‘j

where a is a constant. The values of amj in BS form are stored in the memory bank addressed by :c;', and the
+

; are stored in the memory bank addressed by z; as shown in Figure 7. Each of these multiples (CL:E]»

or ar; ) has ([%+] +1) digits. Each digit has 4 sbits and the total number of sbits for the multiple is 8([ %] +1).
Each sbit can be stored in one CLB. The two selected multiples are combined into az; using one level of SDAs.
Only 3 CLB levels are traversed to get the result. The number of CLBs require by the memory and the SDA
level is: 16([%=] 4+ 1) CLBs. The total number of CLBs is estimated as 16([%*] + 1) + 8([%*] + 2) + 5. This
includes multiple generation, the residual adder and the output digit recoder. When compared to the radix-16
OMA described before, estimated to use 48[7=| + 21 CLBs, the precomputation of multiples reduces the area
by 45% for m, = 32. The on-line delay and the cycle time, assuming a pipelined design, remain the same as in
the previous radix-16 OMA design. with equivalent cycle time. This scheme has the disadvantage of needing to
be reconfigured for different values of coefficient a. The reconfiguration time is considerable and we don’t have
an estimate of its effect on the performance. This approach becomes preferable if FPGAs with fast and partial
reconfiguration are available.

values of —az
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Figure 7: Radix-16 OMA Module with Precomputed Multiples

6 Using the on-line module to compute linear recurrence

equations

On-line modules can be used effectively to solve a system of linear recurrences ['°]. An M order linear
recurrence system of N equations, R < N, M >, with M < N — 1 is defined in ['!] as:

z; =0 forz<0

i—1
xr;, =c¢ + E A5 %

j=i—M

For example, consider the situation R < 4,2 >:

T
T2

T3
T4

@]
C2
C3
Cq

+as1xq
+az1x1  +aszsxs
+a49xs  +aszrs

(4)

The computation graph for this system of equations and an example of the system organization for R < N,2 >

is shown in Figure 8.

With M x N OMA modules, a linear array solves R < N, M > in Tixa) = (N — 1)62 + n — 1 radix-r
digit cycles. A linear array scheme using conventional radix-r multiply-add modules would require O(N x n)
cycles. If fewer modules are implemented, the performance degrades correspondingly. If, for example, we can
use concurrently only 2 OMA modules, the performance of the on-line scheme matches that of a corresponding
conventional implementation. The key advantage of the on-line approach is that it provides an easy way to
implement user-directed variable-precision computations by including the corresponding number of digit slices.
For a precision of m’ < m digits, only about m’ digit-slices are needed. As an illustration of the flexibility when
on-line modules are used, we consider the EVC FPGA board!'® with one Xilinx 4010 FPGA chip with 400 CLBs,
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Figure 8: Computational graph and linear recurrence structure for R < N,2 >

r

2 | 8 |16]32
#OMAs/chip 10143 2

Total Time (cycles) | 51 | 34 | 31 | 52

Table 3: Number of OMAs and cycles to compute R < 5,2 > in the EVC1

a local memory (M) and a system bus interface to the host computer (HC). Table 3 indicates the approximate
mapping and number of cycles to solve a R < 5,2 > system with m = 32 and m, = 8. The radix-16 OMA design
is the one that provides the best performance.

7 Conclusion

The paper presents the tradeoffs and issues in the design of on-line multiply-add modules using higher radices.
We discuss when radix-2 designs on-line modules can be replaced by high-radix design with advantages. We
show that speedups larger than 1.5 can be obtained at a reasonable cost. As expected, the advantage of using
higher radix on-line designs becomes more significant for large precision computations. In this case the cost of
the implementation is much more attractive than that of a radix-2 implementation. We also discuss the use of
on-line multiply-add modules in solving linear recurrences.
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